OCT 05, 2015 06:58 PM PDT

A New Way to Untangle Proteins

WRITTEN BY: Kerry Evans
Researchers at the University of Alabama at Birmingham want to know how E. coli untangles proteins when they become aggregated.  They reason that their findings can be applied to ailments such as Alzheimer’s, Parkinson’s and prion diseases, all of which involve “tangled” proteins.  Misfolded beta-amyloid and tau proteins accumulate in the brain during Alzheimer’s disease, and misfolded alpha-synuclein has been implicated in Parkinson’s disease.  Prions are a type of “infectious” protein responsible for neurodegenerative conditions such as Creutzfeld-Jacob disease.  These protein aggregates are thought to disrupt the normal function of cells, causing various disease symptoms.

The team, led by Aaron Lucius, professor of Chemistry, discovered that the E. coli protein ClpB (caseinolytic protease B) uses a novel mechanism to untangle protein aggregates.  ClpB is an ATPase and belongs to the hexameric AAA+ superfamily of enzymes.  It is produced when cells experience stressful conditions, such as high heat, that denature and aggregate proteins.  The ClpB enzyme consists of six subunits that form a hexagon with a channel in the middle.  
 
ClpB forms a hexagon enclosing a central channel.

ClpB was long thought to function like its counterpart ClpA.  ClpA feeds misfolded proteins through its central channel into the protease ClpP, where they are degraded.  ClpA does this by a mechanism of “processive pulling”, continually feeding long strands of protein into ClpP.  What Lucius and his team found, however, was surprising.  "Oour results support a molecular mechanism where ClpB catalyzes protein disaggregation by tugging and releasing exposed tails or loops”, says Lucius.  

They reason that such a “tugging” mechanism could be used by other enzymes, and may inform therapeutics for Alzheimer’s or Parkinson’s disease.  According to Lucius, “we don’t know how proteins get tangled, but if we can study how proteins get disaggregated, it may have clinical relevance”.  

Sources: Phys.orgBiochemical JournalWikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 25, 2018
Microbiology
SEP 25, 2018
Leaning More About the Microbes We're Constantly Exposed to
Every day our bodies come into direct contact with whatever microbes, chemicals or particles are in our environment....
SEP 30, 2018
Microbiology
SEP 30, 2018
These Microscopic Things Elude Our Eyes Every Day
We take much of what we can see for granted, but if your eyes had the observational power of a microscope, you’d probably look at the world very diff...
OCT 05, 2018
Videos
OCT 05, 2018
Listeria Infections Linked to Deli Ham
The CDC has some advice about a ham recall announced on October 3 by Johnston County Hams, Inc....
NOV 06, 2018
Videos
NOV 06, 2018
Towards a Universal Flu Vaccine
Researchers have to design a new flu vaccine every year. But there are efforts to create a vaccine that works against all strains....
NOV 25, 2018
Drug Discovery
NOV 25, 2018
Advancing Drug Therapies for an Increasing Case of a Parasitic infection Among Displaced Syrians
Cases of Cutaneous leishmaniasis (CL), a parasitic disease, has increased dramatically in Syria and neighboring countries as a result of the conflict-relat...
NOV 26, 2018
Neuroscience
NOV 26, 2018
Behavior Predicting Neural Code Identified
Perceptual choice behavior, taking action based on the information received from the senses is often described by mathematical models...
Loading Comments...