OCT 20, 2015 12:02 PM PDT

Phage on the Prowl

WRITTEN BY: Kerry Evans
Bacteriophages are viruses that infect bacteria.  Have you ever wondered how these guys find their bacterial “prey”?  Investigators at San Diego State University demonstrated that “subdiffusive motion” helps phages efficiently find bacteria.  

The San Diego State University study investigated the T4 bacteriophage, a lytic phage that infects E. coli. T4 is one of the more recognizable phages, somewhat resembling a lunar lander.  The T4 genome is made up of double-stranded DNA and encodes 289 proteins. The DNA is housed in an icosahedral head, or “capsid”, and long tail fibers recognize receptors on the bacterial cell surface.  The tail also serves as a hypodermic needle through which phage DNA is inserted into the host cell.
 
T4 phage attach to E. coli
 
Until now, the so-called “BAM” model (bacteriophage adherence to mucus) has been used to describe how phages move through mucus to encounter bacteria.  In the BAM model, phages randomly diffuse through mucus by Brownian motion, but lead investigator Jeremy Barr wondered if the process was actually more complex.  

First, Barr and colleagues used a biochip that mimicked the mucus layer on lung epithelial cells to characterize phage “hunting strategies”.  They added E. coli to the mucus layer along with wild type T4 phage, or mutant T4 that could not adhere to mucus.  They found that the bacterial load decreased by nearly 4,000 fold when phages were able to adhere to mucus, but mutant phages were not able to kill bacteria.

Next, the team used microscopy to watch phages diffuse through the mucus.  They found that wild type phages (that were able to adhere to mucus) moved by “subdiffusive motion”.  With this type of movement, phages move a short distance, pause by adhering to mucus, then diffuse on.  It appears that this mode of travel is most effective when bacterial concentrations are low, or diversity is high (Brownian motion is sufficient when bacteria are abundant).  According to Barr, “when bacterial diversity is high, it becomes difficult for a phage to find its specific host … under these conditions it’s more advantageous to move subdiffusively, to keep yourself in a location longer and seek out your prey more slowly”.

This is exciting work, because these findings could help researchers engineer phages that are exceptionally good at killing bacteria.  Such phages could then be used in phage therapy to treat bacterial infections.
 

Sources: Phys.org, PNAS, Wikipedia   
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 26, 2019
Microbiology
NOV 26, 2019
New Drug Can Promote Resistance in the Flu Virus
A flu drug, while still safe and effective, encourages flu viruses to mutate, especially in children....
DEC 08, 2019
Microbiology
DEC 08, 2019
Bacterial Hydrogel Shows Promise as a Healer of Gut Wounds
When we get a cut, we easily put a bandage on it and it heals, but internal wounds can be much harder to treat....
JAN 06, 2020
Microbiology
JAN 06, 2020
Microbes May Offset Some of the Negative Impacts of Ocean Microplastics
About 70 percent of the trash in the ocean is made of plastic. There is so much plastic in our oceans, it's thought to have entered our food chain....
JAN 06, 2020
Drug Discovery & Development
JAN 06, 2020
Designing Drugs To Fight off C. Diff Infections
A study published by PNAS explains breakthrough research around designing drugs that target C. diff bacterial infections that result in 15,000 deaths in th...
FEB 14, 2020
Microbiology
FEB 14, 2020
CDC Director Expects Coronavirus to Find a "Foothold"
The novel coronavirus that emerged in Wuhan, Hubei Province, China has now infected over 64,000 people....
FEB 17, 2020
Genetics & Genomics
FEB 17, 2020
Engineering a Genome
Scientists are learning more about how to use the genetic code to make a synthetic genome with specific biological functions....
Loading Comments...