OCT 20, 2015 12:02 PM PDT

Phage on the Prowl

WRITTEN BY: Kerry Evans
Bacteriophages are viruses that infect bacteria.  Have you ever wondered how these guys find their bacterial “prey”?  Investigators at San Diego State University demonstrated that “subdiffusive motion” helps phages efficiently find bacteria.  

The San Diego State University study investigated the T4 bacteriophage, a lytic phage that infects E. coli. T4 is one of the more recognizable phages, somewhat resembling a lunar lander.  The T4 genome is made up of double-stranded DNA and encodes 289 proteins. The DNA is housed in an icosahedral head, or “capsid”, and long tail fibers recognize receptors on the bacterial cell surface.  The tail also serves as a hypodermic needle through which phage DNA is inserted into the host cell.
 
T4 phage attach to E. coli
 
Until now, the so-called “BAM” model (bacteriophage adherence to mucus) has been used to describe how phages move through mucus to encounter bacteria.  In the BAM model, phages randomly diffuse through mucus by Brownian motion, but lead investigator Jeremy Barr wondered if the process was actually more complex.  

First, Barr and colleagues used a biochip that mimicked the mucus layer on lung epithelial cells to characterize phage “hunting strategies”.  They added E. coli to the mucus layer along with wild type T4 phage, or mutant T4 that could not adhere to mucus.  They found that the bacterial load decreased by nearly 4,000 fold when phages were able to adhere to mucus, but mutant phages were not able to kill bacteria.

Next, the team used microscopy to watch phages diffuse through the mucus.  They found that wild type phages (that were able to adhere to mucus) moved by “subdiffusive motion”.  With this type of movement, phages move a short distance, pause by adhering to mucus, then diffuse on.  It appears that this mode of travel is most effective when bacterial concentrations are low, or diversity is high (Brownian motion is sufficient when bacteria are abundant).  According to Barr, “when bacterial diversity is high, it becomes difficult for a phage to find its specific host … under these conditions it’s more advantageous to move subdiffusively, to keep yourself in a location longer and seek out your prey more slowly”.

This is exciting work, because these findings could help researchers engineer phages that are exceptionally good at killing bacteria.  Such phages could then be used in phage therapy to treat bacterial infections.
 

Sources: Phys.org, PNAS, Wikipedia   
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 21, 2018
Genetics & Genomics
JUL 21, 2018
Designer Cells Sense & Destroy MRSA
Staphylococcus aureus is thought to lead to over 11 million visits to the doctor and the ER every year in the US alone....
AUG 02, 2018
Immunology
AUG 02, 2018
Chronic Infections Outsmart the Immune System
Chronic parasitic infection shown to take advantage of a mechanism to sustain infection and induce death of white blood cells essential to immune response....
AUG 23, 2018
Microbiology
AUG 23, 2018
Environmental Nanoparticles May be Harming Cells
Researchers suggest that we take time to learn more about the synthetic chemicals we're releasing into the environment....
OCT 08, 2018
Genetics & Genomics
OCT 08, 2018
Neanderthal DNA Helps us Fight Viruses
The last Neanderthals died around 40,000 years ago, but not before breeding with other humans that were starting to move around the globe....
OCT 09, 2018
Drug Discovery
OCT 09, 2018
'Copper Antibiotic Peptide' Effective in Eradicating Tuberculosis
The bacterium responsible for Tuberculosis has found a way to avoid antibiotics by hiding inside the macrophages which are the specific immune cells that a...
OCT 16, 2018
Videos
OCT 16, 2018
Can the Bacteria That we Carry Give us Special Powers?
The bacteria that we carry in and on our bodies can affect our health and well-being in many ways....
Loading Comments...