OCT 29, 2015 7:19 PM PDT

Poking Holes in Antibiotic Resistance

WRITTEN BY: Kerry Evans
The problem with antibiotics is that bacteria become resistant.  Researchers at the University of Illinois at Urbana-Champaign set out to tackle this issue by designing “resistance-proof” antibiotics.  Their first candidate, a helical antimicrobial polypeptide, just might fit the bill.  

Antimicrobial peptides (AMPs) are rather widespread in nature (they are found in honey, for example). AMPs typically consist of 12 to 50 positively charged and nonpolar amino acids, and take on numerous secondary structures including alpha helices and beta strands.  The majority of AMPs kill bacteria (as well as some viruses and fungi) by disrupting their cell membranes.  The positively charged amino acids are attracted to the negatively charged membrane, and the nonpolar amino acids allow the AMP to interact with the hydrophobic membrane lipids.  These interactions disrupt the membrane, killing the cells.  
 
Antimicrobial peptides come in a variety of structures.

The University of Illinois team, let by Jianjun Cheng, faced a number of challenges when designing an AMP for therapeutic use.  For example, human cells are not immune to AMP activity, and many AMPs are quickly degraded by proteases once they enter the body.  

To overcome these issues, the team designed an AMP with a “radially amphiphilic structure” - a so-called “RA polypeptide”.  What this means is that the positively charged amino acids lie on the outside of the polypeptide, and the hydrophobic amino acids lie on the inside.  The team reasoned that such a design would prevent the RA polypeptides from aggregating and interacting with other components in the blood. In addition, the positively charged amino acids on the surface of the polypeptide should attract it to the negatively charged bacterial membranes.

The researchers plan to use their RA polypeptides in conjunction with traditional antibiotics.  According to Cheng, “the polypeptides punch holes in the membrane, which make it very easy for other drugs to go through and bypass some of the drug-resistant mechanisms … together, they work even better than a single agent”.

Sources: PNAS, Phys.org, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 07, 2020
Genetics & Genomics
Will the Next Outbreak Come From Cattle?
MAY 07, 2020
Will the Next Outbreak Come From Cattle?
Many species of Campylobacter bacteria are infectious and can cause a disease called campylobacteriosis in animals and p ...
MAY 09, 2020
Microbiology
Mysterious Illness in Children May be Related to COVID-19
MAY 09, 2020
Mysterious Illness in Children May be Related to COVID-19
Once thought to be mostly unaffected by the virus, rare cases of an inflammatory syndrome are emerging in some kids that ...
JUL 11, 2020
Microbiology
A Good Germ Can Protect Us From a Nasty One
JUL 11, 2020
A Good Germ Can Protect Us From a Nasty One
E. coli is a microbe that is commonly found in the intestinal tract, where it can exist harmlessly. However, if it gets ...
JUL 15, 2020
Microbiology
A Common Drug Could Help Reduce the Risk of COVID-19 Infections
JUL 15, 2020
A Common Drug Could Help Reduce the Risk of COVID-19 Infections
Heparin is a very common drug that's been approved as an anticoagulant since 1992. Researchers have now found that the m ...
JUL 26, 2020
Microbiology
Ongoing Salmonella Outbreak Rapidly Spreads to 23 States
JUL 26, 2020
Ongoing Salmonella Outbreak Rapidly Spreads to 23 States
The CDC has announced that an outbreak of infections related to a strain of the bacterium Salmonella is "rapidly growing ...
AUG 02, 2020
Microbiology
Examining the Existence of Organelles in Bacteria
AUG 02, 2020
Examining the Existence of Organelles in Bacteria
Cells can be grouped into two general categories: prokaryotic, which make up microbes like bacteria and archaea, or euka ...
Loading Comments...