OCT 29, 2015 07:19 PM PDT

Poking Holes in Antibiotic Resistance

WRITTEN BY: Kerry Evans
The problem with antibiotics is that bacteria become resistant.  Researchers at the University of Illinois at Urbana-Champaign set out to tackle this issue by designing “resistance-proof” antibiotics.  Their first candidate, a helical antimicrobial polypeptide, just might fit the bill.  

Antimicrobial peptides (AMPs) are rather widespread in nature (they are found in honey, for example). AMPs typically consist of 12 to 50 positively charged and nonpolar amino acids, and take on numerous secondary structures including alpha helices and beta strands.  The majority of AMPs kill bacteria (as well as some viruses and fungi) by disrupting their cell membranes.  The positively charged amino acids are attracted to the negatively charged membrane, and the nonpolar amino acids allow the AMP to interact with the hydrophobic membrane lipids.  These interactions disrupt the membrane, killing the cells.  
 
Antimicrobial peptides come in a variety of structures.

The University of Illinois team, let by Jianjun Cheng, faced a number of challenges when designing an AMP for therapeutic use.  For example, human cells are not immune to AMP activity, and many AMPs are quickly degraded by proteases once they enter the body.  

To overcome these issues, the team designed an AMP with a “radially amphiphilic structure” - a so-called “RA polypeptide”.  What this means is that the positively charged amino acids lie on the outside of the polypeptide, and the hydrophobic amino acids lie on the inside.  The team reasoned that such a design would prevent the RA polypeptides from aggregating and interacting with other components in the blood. In addition, the positively charged amino acids on the surface of the polypeptide should attract it to the negatively charged bacterial membranes.

The researchers plan to use their RA polypeptides in conjunction with traditional antibiotics.  According to Cheng, “the polypeptides punch holes in the membrane, which make it very easy for other drugs to go through and bypass some of the drug-resistant mechanisms … together, they work even better than a single agent”.

Sources: PNAS, Phys.org, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 29, 2018
Microbiology
SEP 29, 2018
In a First, Rat Variation of Hepatitis E Found in a Person
It was found in a 56-year-old Hong Kong man....
OCT 05, 2018
Videos
OCT 05, 2018
Listeria Infections Linked to Deli Ham
The CDC has some advice about a ham recall announced on October 3 by Johnston County Hams, Inc....
OCT 31, 2018
Immunology
OCT 31, 2018
Masking the Pathogen
Researchers at Penn State have revealed bacterial pathogens capable of creating components used for DNA replication without the use of metal ions allowing them to evade the immune system...
NOV 19, 2018
Microbiology
NOV 19, 2018
The Gut Microbiome Changes Dramatically When Hunter-gatherers Start Farming
Researchers have shown that lifestyle changes have a rapid and significant influence on the human gut microbiome....
NOV 28, 2018
Microbiology
NOV 28, 2018
A Deadly Microbe Lurks on the Skin of Many People
There are some well-known bacterial pathogens that can present a major threat to health, but a lesser-known microbe may be just as big of a danger....
DEC 10, 2018
Health & Medicine
DEC 10, 2018
Sarcoidosis: Severe Infections and Complications
  Sarcoidosis is characterized by an exaggerated immune response to an unrecognized antigen, which has not yet been identified. It is an inflammatory...
Loading Comments...