OCT 29, 2015 07:19 PM PDT

Poking Holes in Antibiotic Resistance

WRITTEN BY: Kerry Evans
The problem with antibiotics is that bacteria become resistant.  Researchers at the University of Illinois at Urbana-Champaign set out to tackle this issue by designing “resistance-proof” antibiotics.  Their first candidate, a helical antimicrobial polypeptide, just might fit the bill.  

Antimicrobial peptides (AMPs) are rather widespread in nature (they are found in honey, for example). AMPs typically consist of 12 to 50 positively charged and nonpolar amino acids, and take on numerous secondary structures including alpha helices and beta strands.  The majority of AMPs kill bacteria (as well as some viruses and fungi) by disrupting their cell membranes.  The positively charged amino acids are attracted to the negatively charged membrane, and the nonpolar amino acids allow the AMP to interact with the hydrophobic membrane lipids.  These interactions disrupt the membrane, killing the cells.  
 
Antimicrobial peptides come in a variety of structures.

The University of Illinois team, let by Jianjun Cheng, faced a number of challenges when designing an AMP for therapeutic use.  For example, human cells are not immune to AMP activity, and many AMPs are quickly degraded by proteases once they enter the body.  

To overcome these issues, the team designed an AMP with a “radially amphiphilic structure” - a so-called “RA polypeptide”.  What this means is that the positively charged amino acids lie on the outside of the polypeptide, and the hydrophobic amino acids lie on the inside.  The team reasoned that such a design would prevent the RA polypeptides from aggregating and interacting with other components in the blood. In addition, the positively charged amino acids on the surface of the polypeptide should attract it to the negatively charged bacterial membranes.

The researchers plan to use their RA polypeptides in conjunction with traditional antibiotics.  According to Cheng, “the polypeptides punch holes in the membrane, which make it very easy for other drugs to go through and bypass some of the drug-resistant mechanisms … together, they work even better than a single agent”.

Sources: PNAS, Phys.org, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
DNA Analysis Shows How Algae Respond to a Changing Environment
While a type of algae appears to be thriving in the face of its downgraded envrionment, the story is turning out to be more complex....
OCT 20, 2019
Microbiology
OCT 20, 2019
A Microbe That Makes Methane From Oil is Found in the Gulf of Mexico
Archaea occupy their own branch on the tree of life and exist in some of the most extreme environments on the planet....
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
A More Precise Version of CRISPR/Cas9 is Created
A more accurate version of Cas9 has been created, reducing the number of off-target effects. It may be better suited for use in gene therapy....
OCT 20, 2019
Microbiology
OCT 20, 2019
Using CRISPR to Alter or Kill Bacteria
In recent years, the gene editing tool CRISPR/Cas9 has been applied to a wide variety of different organisms, and now, bacteria....
OCT 20, 2019
Health & Medicine
OCT 20, 2019
Are Washing Machines a Reservoir for Multidrug Resistant Pathogens?
Multidrug-resistant bacteria are frequently found in hospitals and long-term nursing facilities causing one of the largest public health concerns worldwide...
Loading Comments...