JAN 14, 2016 3:38 PM PST

Socialist Bacteria Resist Antibiotics

WRITTEN BY: Kerry Evans
Bacteria are socialists.  That’s according to University of Vermont researchers who identified a new strategy that bacteria use to resist antibiotics.  It’s called “stochastic transient resistance”.

E. coli cells produce a protein called MarA - named for “multiple antibiotic resistance activator”.  This activator controls the expression of nearly 40 genes that contribute to antibiotic resistance.  When certain antibiotics are present, MarA is expressed, producing resistant cells.

Since bacteria don’t know when and where they’ll encounter an antibiotic, the group reasoned that some cells might randomly - stochastically - express MarA even when no antibiotic is present.  Since an entire population of bacteria can regrow from a single cell, you only need a few cells in the population to be resistant at any one time (that’s evidently the socialism part).  According to study author Mary Dunlop, “it's costly from a metabolic standpoint for a cell to express the proteins that enable it to be resistant … this strategy allows a colony to hedge its bets by enabling individual cells within a population to assume high levels of resistance while others avoid this extra work”.
 
Cells fight antibiotics with stochastic transient resistance.

Dunlop and colleagues tested their predictions with a fluorescent MarA reporter.  They exposed cells to carbenicillin and measured MarA levels.  Cells with high levels of MarA at the time they were exposed to carbenicillin survived the treatment.  Likewise, when they overexpressed MarA, the cells survived. They died, however, if the MarA system was disabled in the presence of carbenicillin.

The study also suggests that this resistance mechanism may contribute to persistent infections, especially in patients with chronic conditions like cystic fibrosis.  They suggest that altering the frequency and duration of antibiotic treatments could help clinicians fight such infections.  

Sources: Science Daily, Nature Scientific Reports, UniProt, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAR 26, 2020
Cell & Molecular Biology
MAR 26, 2020
A Large Cavity is Discovered in a Tuberculosis Protein
Scientists have discovered something very unusual about a protein that is thought to be important to the development of ...
APR 07, 2020
Microbiology
APR 07, 2020
Second COVID-19 Vaccine Enters Human Trials
Yesterday, Inovio Pharmaceuticals, Inc. announced that it will begin human trials on a potential vaccine for COVID-19.
APR 19, 2020
Genetics & Genomics
APR 19, 2020
Two New Viruses IDed in Brazilian Patient Samples
After an assessment of blood samples collected in Brazil between 2013 and 2016, scientists have found two new species of ...
APR 29, 2020
Genetics & Genomics
APR 29, 2020
Toxoplasma Infections Can Cause Epigenetic Changes in Males
Anywhere from 25 to 80% of the world's population is infected with a parasite called Toxoplasma gondii.
MAY 05, 2020
Cell & Molecular Biology
MAY 05, 2020
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
Samples obtained from patients from all over the world have been used to sequence the genomes of the viral strains infec ...
MAY 10, 2020
Microbiology
MAY 10, 2020
We Still Don't Know Why Rat Hepatitis is Turning Up in People
Hepatitis is a term for liver inflammation. Hepatitis A, B, C, D, and E are caused by viruses.
Loading Comments...