MAR 08, 2016 8:58 AM PST

Scientists build a placenta to study infections like Zika

A new cell-based model of the human placenta could help explain how pathogens cross from mother to unborn child.

The researchers are beginning to use their model to test whether Zika virus, and other pathogens associated with congenital disease, can infect placental cells and/or cross the placental barrier.

“The human placenta is unique and unlike that of other many other placental mammals,” says Carolyn Coyne, ssociate professor of microbiology and molecular genetics at the University of Pittsburgh School of Medicine. “With our new model in the research toolkit, we and other scientists hope to advance our knowledge of the placenta, examine its function, and learn how it can prevent most, but not all, maternal infections from causing problems for the baby.”
 
With the help of a microgravity chamber, scientists developed a 3D model of the placenta to learn more about how infectious agents can cross from mother to unborn child.

Researchers currently can obtain and study placental cell lines, but such cells do not fuse spontaneously to form the characteristic structure of the human organ. Some scientists study cells, called primary human trophoblasts, that are isolated from placentas obtained after childbirth, but such cells do not divide, can be more difficult to obtain, and are more difficult to genetically manipulate to learn about biochemical pathways that have a role in placental function, says Coyne, senior investigator of the study published in Science Advances.
 

A different approach


Coyne’s team cultured a human placental trophoblast cell line in a microgravity bioreactor system developed by NASA. The trophoblasts along with blood vessel cells were added to small dextran beads that were then spun around in a container filled with cell culture fluid, creating shear stress and rotational forces to better mimic the environment at the maternal-fetal interface than static cell-culture systems.

As a result, the cells fused to form syncytiotrophoblasts, and thus more closely resemble the primary cells lining the outermost layer of the tree-like or villous structure of the human placental tissue.

Next, the researchers tested the functional properties of their model by exposing it to a virus and to Toxoplasma gondii, a parasite found in cat feces that can lead to fetal infection, causing miscarriage, congenital disease, and/or disability later in life.

“We found that the syncytiotrophoblasts formed in our system recapitulated the barrier properties of the naturally occurring cells and they resisted infection by a model virus and three genetically different strains of Toxoplasma,” says Jon P. Boyle, co-investigator and associate professor of biological sciences. “With this model, we can experiment with different biological factors to see what might allow an infectious agent to get through the placental barrier to the fetus.”

He says understanding the placenta might one day lead to ways to prevent fetal damage from the so-called TORCH infections: toxoplasmosis, rubella, cytomegalovirus, herpes, and HIV.

Additional researchers from the University of Pittsburgh, Arizona State University, and Johns Hopkins University contributed to the research, which was funded by the National Institutes of Health and the Burroughs Wellcome Fund.

Source: University of Pittsburgh

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JAN 28, 2020
Immunology
JAN 28, 2020
Infectious Parasite Manipulates the Immune System to Survive
Toxoplasma gondii suppresses the immune system of the hosts it infects – human or otherwise – just enough to survive, thrive, and move on to mo...
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
FEB 22, 2020
Neuroscience
FEB 22, 2020
Does Your Gut Bacteria Influence Your Personality?
A researcher from Oxford University, UK, has found that certain gut bacteria may be able to influence our personality traits via the microbiome-gut-brain a...
MAR 09, 2020
Microbiology
MAR 09, 2020
Chlamydiae Bacteria are Found Deep in the Arctic Ocean
Scientists studying microbial life near a hydrothermal vent were surprised to find Chlamydiae bacteria....
MAR 24, 2020
Cell & Molecular Biology
MAR 24, 2020
Certain Drugs May Raise the Risk of a Severe COVID-19 Infection
ACEIs and ARBs may make coronavirus infections worse, which can help explain why older adults are faring so much worse....
MAR 29, 2020
Microbiology
MAR 29, 2020
Plastic-Eating Microbe is Found
Plastics entered the consumer market after World War II and since then it's been used in countless ways....
Loading Comments...