MAR 08, 2016 8:58 AM PST

Scientists build a placenta to study infections like Zika

A new cell-based model of the human placenta could help explain how pathogens cross from mother to unborn child.

The researchers are beginning to use their model to test whether Zika virus, and other pathogens associated with congenital disease, can infect placental cells and/or cross the placental barrier.

“The human placenta is unique and unlike that of other many other placental mammals,” says Carolyn Coyne, ssociate professor of microbiology and molecular genetics at the University of Pittsburgh School of Medicine. “With our new model in the research toolkit, we and other scientists hope to advance our knowledge of the placenta, examine its function, and learn how it can prevent most, but not all, maternal infections from causing problems for the baby.”
 
With the help of a microgravity chamber, scientists developed a 3D model of the placenta to learn more about how infectious agents can cross from mother to unborn child.

Researchers currently can obtain and study placental cell lines, but such cells do not fuse spontaneously to form the characteristic structure of the human organ. Some scientists study cells, called primary human trophoblasts, that are isolated from placentas obtained after childbirth, but such cells do not divide, can be more difficult to obtain, and are more difficult to genetically manipulate to learn about biochemical pathways that have a role in placental function, says Coyne, senior investigator of the study published in Science Advances.
 

A different approach


Coyne’s team cultured a human placental trophoblast cell line in a microgravity bioreactor system developed by NASA. The trophoblasts along with blood vessel cells were added to small dextran beads that were then spun around in a container filled with cell culture fluid, creating shear stress and rotational forces to better mimic the environment at the maternal-fetal interface than static cell-culture systems.

As a result, the cells fused to form syncytiotrophoblasts, and thus more closely resemble the primary cells lining the outermost layer of the tree-like or villous structure of the human placental tissue.

Next, the researchers tested the functional properties of their model by exposing it to a virus and to Toxoplasma gondii, a parasite found in cat feces that can lead to fetal infection, causing miscarriage, congenital disease, and/or disability later in life.

“We found that the syncytiotrophoblasts formed in our system recapitulated the barrier properties of the naturally occurring cells and they resisted infection by a model virus and three genetically different strains of Toxoplasma,” says Jon P. Boyle, co-investigator and associate professor of biological sciences. “With this model, we can experiment with different biological factors to see what might allow an infectious agent to get through the placental barrier to the fetus.”

He says understanding the placenta might one day lead to ways to prevent fetal damage from the so-called TORCH infections: toxoplasmosis, rubella, cytomegalovirus, herpes, and HIV.

Additional researchers from the University of Pittsburgh, Arizona State University, and Johns Hopkins University contributed to the research, which was funded by the National Institutes of Health and the Burroughs Wellcome Fund.

Source: University of Pittsburgh

This article was originally posted on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
APR 04, 2021
Microbiology
A Nanoparticle-Based Universal Flu Vaccine Moves Closer to Use
APR 04, 2021
A Nanoparticle-Based Universal Flu Vaccine Moves Closer to Use
There are many different influenza viruses, which cause from 290,000 to 650,000 deaths every year. That range depends on ...
APR 21, 2021
Microbiology
An Unknown Unknown - What's the State of Microbial Biodiversity?
APR 21, 2021
An Unknown Unknown - What's the State of Microbial Biodiversity?
Researchers have noted that we have a 'profound ignorance' about the state of the microbial populations of the world.
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 13, 2021
Microbiology
The Gut Microbiome Was More Diverse in Ancient People
MAY 13, 2021
The Gut Microbiome Was More Diverse in Ancient People
What can we learn from a specimen of ancient poo? A lot, it turns out. Scientists have now reported their findings from ...
MAY 27, 2021
Microbiology
Some Microbes May Protect the Gut From Chemo's Harmful Effects
MAY 27, 2021
Some Microbes May Protect the Gut From Chemo's Harmful Effects
The microbes in our gut can influence our physiology in many ways. Some gut microbes have a positive impact on human hea ...
JUN 03, 2021
Drug Discovery & Development
Antibiotics Ineffective Against Lung-Scarring Disease
JUN 03, 2021
Antibiotics Ineffective Against Lung-Scarring Disease
Researchers behind a large trial of antibiotics for chronic lung diseases have found that that the drugs are ineffective ...
Loading Comments...