APR 26, 2016 9:09 AM PDT

Smart catheter signals an infection

WRITTEN BY: Kerry Evans
Bacteria love to take up residence in urinary catheters. Now, there’s a new bit of technology that can tell healthcare workers when bacteria are present, curbing the risk of urinary tract infections. University of Bath researchers reported their findings in a recent issue of Biosensors and Bioelectronics.

In the US, 90,000 people acquire urinary tract infections each year as a result of catheter use, and in England and Wales, the cost to treat these infections is around 120 million pounds a year.  
 
Catheters can be blocked by bacterial biofilms.

Bacteria like Proteus mirabilis build biofilms along the walls of a catheter. If the biofilms become large enough, they can block urine flow out of the catheter. This can cause urine and bacteria to back up into the bladder, leading to infections and, in serious cases, kidney failure.

The new technology is based on the fact that P. mirabilis (and other urease-producing bacteria) convert urea to ammonia, raising the pH of urine. The pH change dissolves the outermost coating of the catheter, releasing a dye called carboxyfluorescein that turns urine very bright yellow.

According to study author Toby Jenkins, “our new coating works with existing catheter designs and gives a clear, early visual warning of infection before a catheter is blocked. It could dramatically reduce the number of infections resulting from bacterial blockages”.

The researchers used an in vitro bladder system - complete with artificial urine - to test their catheters. When the catheters were inoculated with P. mirabilis, the artificial urine changed color after only 4.2 hours. No color changes were seen in the absence of bacteria or when the catheters were inoculated with E. coli, which do not produce urease. The group concluded that their smart catheter system could provide 10-12 hours of advance warning that a blockage is present, decreasing the risk of infection.

“Catheter-related infections are a serious problem, especially if the bacteria are resistant to antibiotics. We hope that with this simple to use sensor system we can ultimately make a real difference to patients' lives”, says Jenkins.

Sources: Biosensors and Bioelectronics, EurekAlert, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
FEB 10, 2020
Microbiology
FEB 10, 2020
As Ebola Outbreak Continues, Researchers Create Faster Genetic Test
Since 2013, around 30,000 people have been infected during several outbreaks of Ebola in eight different countries....
FEB 24, 2020
Microbiology
FEB 24, 2020
The World Tries to Stop the Global Spread of COVID-19
There's been a rise in harmful stereotyping and discrimination against certain populations because of coronavirus....
MAR 11, 2020
Microbiology
MAR 11, 2020
WHO Declares a Pandemic as COVID-19 Cases Top 125,000 in 112 Countries
In a move many have expected, WHO has declared that the coronavirus called SARS-CoV-2, which causes an illness called COVID-19, is a pandemic....
MAR 24, 2020
Cell & Molecular Biology
MAR 24, 2020
Certain Drugs May Raise the Risk of a Severe COVID-19 Infection
ACEIs and ARBs may make coronavirus infections worse, which can help explain why older adults are faring so much worse....
APR 02, 2020
Chemistry & Physics
APR 02, 2020
Improved management of nitrate pollution
Researchers have finally succeeded in improving the mechanisms available for the degradation of nitrate pollution. Scientists at the Center for Sustainable...
APR 05, 2020
Microbiology
APR 05, 2020
How Life Beneath the Sea Informs the Search for Life on Mars
Single-celled microbes that live beneath the floor of the ocean have provided insight into how scientists might be able to find life on Mars....
Loading Comments...