APR 26, 2016 09:09 AM PDT

Smart catheter signals an infection

WRITTEN BY: Kerry Evans
Bacteria love to take up residence in urinary catheters. Now, there’s a new bit of technology that can tell healthcare workers when bacteria are present, curbing the risk of urinary tract infections. University of Bath researchers reported their findings in a recent issue of Biosensors and Bioelectronics.

In the US, 90,000 people acquire urinary tract infections each year as a result of catheter use, and in England and Wales, the cost to treat these infections is around 120 million pounds a year.  
 
Catheters can be blocked by bacterial biofilms.

Bacteria like Proteus mirabilis build biofilms along the walls of a catheter. If the biofilms become large enough, they can block urine flow out of the catheter. This can cause urine and bacteria to back up into the bladder, leading to infections and, in serious cases, kidney failure.

The new technology is based on the fact that P. mirabilis (and other urease-producing bacteria) convert urea to ammonia, raising the pH of urine. The pH change dissolves the outermost coating of the catheter, releasing a dye called carboxyfluorescein that turns urine very bright yellow.

According to study author Toby Jenkins, “our new coating works with existing catheter designs and gives a clear, early visual warning of infection before a catheter is blocked. It could dramatically reduce the number of infections resulting from bacterial blockages”.

The researchers used an in vitro bladder system - complete with artificial urine - to test their catheters. When the catheters were inoculated with P. mirabilis, the artificial urine changed color after only 4.2 hours. No color changes were seen in the absence of bacteria or when the catheters were inoculated with E. coli, which do not produce urease. The group concluded that their smart catheter system could provide 10-12 hours of advance warning that a blockage is present, decreasing the risk of infection.

“Catheter-related infections are a serious problem, especially if the bacteria are resistant to antibiotics. We hope that with this simple to use sensor system we can ultimately make a real difference to patients' lives”, says Jenkins.

Sources: Biosensors and Bioelectronics, EurekAlert, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 10, 2018
Microbiology
OCT 10, 2018
It's Time for Your Annual Flu Shot
After last year's flu season killed around 80,000 people, the CDC is trying to get the word out about the flu vaccine....
OCT 24, 2018
Drug Discovery
OCT 24, 2018
Silver Nanoparticles Coat Anti-seizure Drugs To Combat Brain-Eating Amoebae
Since Halloween is around the corner, it is science-fiction season and some may choose to celebrate by watching movies featuring brain-eating zombies. Howe...
NOV 13, 2018
Microbiology
NOV 13, 2018
How the Microbiome, Fiber, and Heart Health are Linked
High-fiber diets are linked to better health, including healthier hearts and arteries, but why?...
NOV 19, 2018
Microbiology
NOV 19, 2018
The Gut Microbiome Changes Dramatically When Hunter-gatherers Start Farming
Researchers have shown that lifestyle changes have a rapid and significant influence on the human gut microbiome....
NOV 26, 2018
Health & Medicine
NOV 26, 2018
Nontuberculous Mycobacterial Infections in Tattoos
Contracting an infection when getting a tattoo is always a major concern. Consumers should be aware of the risk of developing infections with bloodborne pa...
NOV 25, 2018
Health & Medicine
NOV 25, 2018
Why Does E. Coli Make us Sick?
  Escherichia coli, or E. coli refer to a diverse group of of bacteria commonly found in the lower intestine of warm blooded animals. While E. coli ga...
Loading Comments...