MAY 29, 2016 5:51 PM PDT

Better Know a Microbe: Vampire Amoebas!

WRITTEN BY: Kerry Evans
Vampyrellids are teeny-tiny vampires. Okay, technically they’re single-celled amoebas that belong to the family Vampyrellidae. (“Teeny-tiny vampires” is way more interesting.)

These so-called “vampire amoebas” were discovered by Leon Semenowitj Cienkowski way back in 1865. They come in various shapes but are typically between 30-100 microns long. The majority are spherical with “filose pseudopods” extending from the cell body (think spheres with long spikes sticking out). The cells are free-living and live in water and soil. (Watch out for the tiny vampires under your feet!)
 
A vampire amoeba preys on green algae.

But, what makes them “vampires”? Unlike other amoebas that essentially engulf their prey, the vampire amoebas feed on their prey (algae, fungi, and even nematodes!) by poking holes in their cells and sucking out all the (yummy) juices. Hence, vampires.

A study from the 1920s described the process quite colorfully. First, the amoeba “spreads partly around the doomed cell”. Then, “within a minute or so the transverse walls of the attacked cell begin to bend gradually inward”. Once the amoeba pokes a hole in the “doomed cell”, the amoeba swells due to “the injection of algal cell contents into the animal through an oval opening”.

After feeding, the free-living amoebas join together and build “digestive cysts” where they digest their latest meal and also reproduce.

These vampires even made the news recently. UC Santa Barbara paleobiologist Susannah Porter reported finding tiny holes drilled into fossilized eukaryotes found near the Grand Canyon. She thinks these holes were probably made by vampire amoebas nearly 740 million years ago! (They’re even older than Dracula!)

There’s still one big unanswered question about the little vampires - how do they manage to poke holes in tough, rigid cell walls? According to Sebastian Hess at the University of Cologne, “the perforation of the cell wall … can be done in five to ten minutes … they must have a set of enzymes which can digest plant cell walls”.

The answer to this question could be very useful for companies interested in making biofuels from algae. Algae are easy to grow, but breaking down their cell walls isn’t so straightforward.

Sources: BBC, UC Santa Barbara, Science, Encyclopedia of Life, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 01, 2020
Cell & Molecular Biology
Smell Cells Are Especially Good at Fighting the Flu
SEP 01, 2020
Smell Cells Are Especially Good at Fighting the Flu
All over the body, cells line organs and vessels, forming protective barriers. But pathogens like the flu have gained th ...
SEP 23, 2020
Cell & Molecular Biology
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
SEP 23, 2020
How Heparan Sulfate Helps SARS-CoV-2 Enter Cells
In order to infect a cell, the SARS-CoV-2 virus has to find a way in. It can use receptors on the surface of cells that ...
OCT 18, 2020
Cell & Molecular Biology
Small RNA is Connected to Bacterial Pathogenicity
OCT 18, 2020
Small RNA is Connected to Bacterial Pathogenicity
It's thought that as much as half of the global population carries a bacterium called Helicobacter pylori in their stoma ...
NOV 24, 2020
Immunology
Dirty Sheets Make Babies Healthier
NOV 24, 2020
Dirty Sheets Make Babies Healthier
Microbiologists have established that the development of infants’ immune systems is intricately linked to the dive ...
NOV 23, 2020
Microbiology
Drug Resistance in Tuberculosis Involves a Unique Mechanism
NOV 23, 2020
Drug Resistance in Tuberculosis Involves a Unique Mechanism
The pathogenic bacterium that causes tuberculosis, Mycobacterium tuberculosis, does not multiply quickly, so researchers ...
DEC 02, 2020
Cell & Molecular Biology
Expanding Our View of Cell Membranes
DEC 02, 2020
Expanding Our View of Cell Membranes
Many of the things biologists want to study are extremely small, and researchers now have many powerful tools for gettin ...
Loading Comments...