FEB 24, 2015 10:17 AM PST

Antibiotics Spur New Communities of Dangerous Bacteria

WRITTEN BY: Judy O'Rourke
Researchers from the University of North Carolina at Chapel Hill and the University of San Diego, La Jolla, reveal that the way we often think about antibiotics - as straightforward killing machines - needs to be revised.

The work, led by Elizabeth Shank, PhD, assistant professor of biology in the UNC-Chapel Hill College of Arts and Sciences and microbiology and immunology in the UNC-Chapel Hill School of Medicine, and Rachel Bleich, a graduate student in the UNC-Chapel Hill Eshelman School of Pharmacy, adds a new dimension to how we treat infections, and might also change our understanding of why bacteria produce antibiotics in the first place.
Polymicrobic biofilm epifluorescence
"For a long time we've thought that bacteria make antibiotics for the same reasons that we love them - because they kill other bacteria," says Shank, whose work appears in the February 23 Early Edition of the Proceedings of the National Academy of Sciences. "However, we've also known that antibiotics can sometimes have pesky side-effects, like stimulating biofilm formation."

Shank and her team now show that this side-effect - the production of biofilms - is not a side-effect after all, suggesting that bacteria may have evolved to produce antibiotics in order to produce biofilms and not only for their killing abilities.

Biofilms are communities of bacteria that form on surfaces, a phenomenon dentists usually refer to as plaque. Biofilms are everywhere. In many cases, biofilms can be beneficial, such as when they protect plant roots from pathogens. But they can also harm, for instance when they form on medical catheters or feeding tubes in patients, causing disease.

"It was never that surprising that many bacteria form biofilms in response to antibiotics: it helps them survive an attack. But it's always been thought that this was a general stress response, a kind of nonspecific side-effect of antibiotics." Shank says. "Our findings indicate that this isn't true. We've discovered an antibiotic that very specifically activates biofilm formation, and does so in a way that has nothing to do with its ability to kill."

Shank and her team previously reported that the soil bacterium Bacillus cereus could stimulate the bacterium Bacillus subtilis to form a biofilm in response to an unknown secreted signal. B. subtilis is found in soil and the gastrointestinal tract of humans. Using imaging mass spectrometry, they subsequently identified the signaling compound that induced biofilm production as thiocillin, a member of a class of antibiotics called thiazolyl peptide antibiotics, which are produced by a range of bacteria.

At that point, Shank and her colleagues knew thiocillin had two very specific and different functions, but they didn't know why - and wanted to know how it worked. That's when they modified thiocillin's structure in a way that eliminated thiocillin's antibiotic activity, but did not halt biofilm production.

"That suggests that antibiotics can independently and simultaneously induce potentially dangerous biofilm formation in other bacteria and that these activities may be acting through specific signaling pathways," Shank says. "It has generated further discussion about the evolution of antibiotic activity, and the fact that some antibiotics being used therapeutically may induce biofilm formation in a strong and specific way, which has broad implications for human health."

[Source: The University of North Carolina at Chapel Hill]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 10, 2019
Immunology
DEC 10, 2019
T Cell Subset Uniquely Equipped to Target IBD
A specialized form of T cell emerges as a new focus for gastrointestinal health research, specifically in the context of inflammatory bowel disease (IBD) f...
DEC 15, 2019
Microbiology
DEC 15, 2019
Neurons in the Gut Can Detect Salmonella & Protect Against Infection
Nerve cells act as critical sensors for the human body, and now scientists have found that they have another role in the small intestine....
DEC 20, 2019
Neuroscience
DEC 20, 2019
Are Migraines Caused by Unhealthy Gut Bacteria?
Research is increasingly pointing towards the importance of the gut-brain axis in regulating our health. Not only has the health of our gut bacteria, or mi...
DEC 20, 2019
Genetics & Genomics
DEC 20, 2019
Outbreak of Drug-Resistant Infections Linked to Pet Store Puppies
The CDC is warning people about an outbreak of drug-resistant bacteria that's been linked to store-bought puppies....
FEB 03, 2020
Drug Discovery & Development
FEB 03, 2020
HIV Viral Structures Improve Therapeutics
Researchers have recently discovered how a powerful class of HIV drugs bind to a key piece of HIV machinery. Their findings, for the first time, shows how ...
FEB 12, 2020
Microbiology
FEB 12, 2020
Using Genomics to Learn More About a Mumps Outbreak
Though vaccination rates are high, small mumps outbreaks sometimes still occur....
Loading Comments...