FEB 24, 2015 10:17 AM PST

Antibiotics Spur New Communities of Dangerous Bacteria

WRITTEN BY: Judy O'Rourke
Researchers from the University of North Carolina at Chapel Hill and the University of San Diego, La Jolla, reveal that the way we often think about antibiotics - as straightforward killing machines - needs to be revised.

The work, led by Elizabeth Shank, PhD, assistant professor of biology in the UNC-Chapel Hill College of Arts and Sciences and microbiology and immunology in the UNC-Chapel Hill School of Medicine, and Rachel Bleich, a graduate student in the UNC-Chapel Hill Eshelman School of Pharmacy, adds a new dimension to how we treat infections, and might also change our understanding of why bacteria produce antibiotics in the first place.
Polymicrobic biofilm epifluorescence
"For a long time we've thought that bacteria make antibiotics for the same reasons that we love them - because they kill other bacteria," says Shank, whose work appears in the February 23 Early Edition of the Proceedings of the National Academy of Sciences. "However, we've also known that antibiotics can sometimes have pesky side-effects, like stimulating biofilm formation."

Shank and her team now show that this side-effect - the production of biofilms - is not a side-effect after all, suggesting that bacteria may have evolved to produce antibiotics in order to produce biofilms and not only for their killing abilities.

Biofilms are communities of bacteria that form on surfaces, a phenomenon dentists usually refer to as plaque. Biofilms are everywhere. In many cases, biofilms can be beneficial, such as when they protect plant roots from pathogens. But they can also harm, for instance when they form on medical catheters or feeding tubes in patients, causing disease.

"It was never that surprising that many bacteria form biofilms in response to antibiotics: it helps them survive an attack. But it's always been thought that this was a general stress response, a kind of nonspecific side-effect of antibiotics." Shank says. "Our findings indicate that this isn't true. We've discovered an antibiotic that very specifically activates biofilm formation, and does so in a way that has nothing to do with its ability to kill."

Shank and her team previously reported that the soil bacterium Bacillus cereus could stimulate the bacterium Bacillus subtilis to form a biofilm in response to an unknown secreted signal. B. subtilis is found in soil and the gastrointestinal tract of humans. Using imaging mass spectrometry, they subsequently identified the signaling compound that induced biofilm production as thiocillin, a member of a class of antibiotics called thiazolyl peptide antibiotics, which are produced by a range of bacteria.

At that point, Shank and her colleagues knew thiocillin had two very specific and different functions, but they didn't know why - and wanted to know how it worked. That's when they modified thiocillin's structure in a way that eliminated thiocillin's antibiotic activity, but did not halt biofilm production.

"That suggests that antibiotics can independently and simultaneously induce potentially dangerous biofilm formation in other bacteria and that these activities may be acting through specific signaling pathways," Shank says. "It has generated further discussion about the evolution of antibiotic activity, and the fact that some antibiotics being used therapeutically may induce biofilm formation in a strong and specific way, which has broad implications for human health."

[Source: The University of North Carolina at Chapel Hill]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
OCT 17, 2019
Microbiology
OCT 17, 2019
Cigarette Smoke can Increase the Pathogenicity of Microbes
Strains of MRSA can become more resistant to antibiotics when exposed to cigarette smoke....
OCT 17, 2019
Genetics & Genomics
OCT 17, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
OCT 17, 2019
Microbiology
OCT 17, 2019
The Long Evolutionary History of Antibiotics and Resistance
The world is full of bacteria that have to share the world with myriad species, and often have to live in competition with other microbes....
OCT 17, 2019
Health & Medicine
OCT 17, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
OCT 17, 2019
Cell & Molecular Biology
OCT 17, 2019
Researchers Prevent the Common Cold in Human Cells and Mice
Colds are famous for being incurable, but researchers may have found a way to stop them....
OCT 17, 2019
Immunology
OCT 17, 2019
Flu Shot Less Effective Due to Overuse of Antibioitics
New research out of the Stanford University School of Medicine shows that the consequence of overuse of antibiotics lowers the effectiveness of the seasona...
Loading Comments...