FEB 24, 2015 10:17 AM PST

Antibiotics Spur New Communities of Dangerous Bacteria

WRITTEN BY: Judy O'Rourke
Researchers from the University of North Carolina at Chapel Hill and the University of San Diego, La Jolla, reveal that the way we often think about antibiotics - as straightforward killing machines - needs to be revised.

The work, led by Elizabeth Shank, PhD, assistant professor of biology in the UNC-Chapel Hill College of Arts and Sciences and microbiology and immunology in the UNC-Chapel Hill School of Medicine, and Rachel Bleich, a graduate student in the UNC-Chapel Hill Eshelman School of Pharmacy, adds a new dimension to how we treat infections, and might also change our understanding of why bacteria produce antibiotics in the first place.
Polymicrobic biofilm epifluorescence
"For a long time we've thought that bacteria make antibiotics for the same reasons that we love them - because they kill other bacteria," says Shank, whose work appears in the February 23 Early Edition of the Proceedings of the National Academy of Sciences. "However, we've also known that antibiotics can sometimes have pesky side-effects, like stimulating biofilm formation."

Shank and her team now show that this side-effect - the production of biofilms - is not a side-effect after all, suggesting that bacteria may have evolved to produce antibiotics in order to produce biofilms and not only for their killing abilities.

Biofilms are communities of bacteria that form on surfaces, a phenomenon dentists usually refer to as plaque. Biofilms are everywhere. In many cases, biofilms can be beneficial, such as when they protect plant roots from pathogens. But they can also harm, for instance when they form on medical catheters or feeding tubes in patients, causing disease.

"It was never that surprising that many bacteria form biofilms in response to antibiotics: it helps them survive an attack. But it's always been thought that this was a general stress response, a kind of nonspecific side-effect of antibiotics." Shank says. "Our findings indicate that this isn't true. We've discovered an antibiotic that very specifically activates biofilm formation, and does so in a way that has nothing to do with its ability to kill."

Shank and her team previously reported that the soil bacterium Bacillus cereus could stimulate the bacterium Bacillus subtilis to form a biofilm in response to an unknown secreted signal. B. subtilis is found in soil and the gastrointestinal tract of humans. Using imaging mass spectrometry, they subsequently identified the signaling compound that induced biofilm production as thiocillin, a member of a class of antibiotics called thiazolyl peptide antibiotics, which are produced by a range of bacteria.

At that point, Shank and her colleagues knew thiocillin had two very specific and different functions, but they didn't know why - and wanted to know how it worked. That's when they modified thiocillin's structure in a way that eliminated thiocillin's antibiotic activity, but did not halt biofilm production.

"That suggests that antibiotics can independently and simultaneously induce potentially dangerous biofilm formation in other bacteria and that these activities may be acting through specific signaling pathways," Shank says. "It has generated further discussion about the evolution of antibiotic activity, and the fact that some antibiotics being used therapeutically may induce biofilm formation in a strong and specific way, which has broad implications for human health."

[Source: The University of North Carolina at Chapel Hill]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
MAR 22, 2020
Microbiology
MAR 22, 2020
Men Are More Susceptible to COVID-19 Than Women
More data is being gathered from an unfortunate and dramatic rise in the number of COVID-19 cases around the world.
MAR 25, 2020
Clinical & Molecular DX
MAR 25, 2020
A coronavirus testing kit with glow-in-the-dark Mango?
A group of Canadian researchers is responding to a desperate need for COVID-19 diagnostic kits with their fluorescent im ...
MAR 29, 2020
Microbiology
MAR 29, 2020
Plastic-Eating Microbe is Found
Plastics entered the consumer market after World War II and since then it's been used in countless ways.
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
MAY 08, 2020
Immunology
MAY 08, 2020
Vaccine Prevents Virally-induced Type 1 Diabetes
Scientists aren’t exactly sure what causes type 1 diabetes, although genetics and environmental factors are presum ...
MAY 21, 2020
Clinical & Molecular DX
MAY 21, 2020
Fidget Spinner Diagnoses Infections
The fidget spinner toy craze took the world by storm — a small, boomerang-shaped gadget that rotates hypnotically ...
Loading Comments...