JUN 19, 2016 8:43 AM PDT

Global patterns of zoonotic disease may predict transmission

WRITTEN BY: Kerry Evans
A new study published in Trends in Parasitology reveals patterns that could be used to predict the locations of future zoonotic disease outbreaks.

Zoonotic diseases are diseases that infect animals and can be transmitted to humans. They can be caused by bacteria, viruses, parasites, and fungi, and can be transmitted in a number of ways.
Zoonotic diseases impact human health.
Direct transmission can occur through the air or from direct contact with fluids like blood or saliva - influenza or rabies, for example. Alternately, zoonotic diseases such as West Nile virus can be spread by vectors like mosquitoes. Fun fact - fairs and petting zoos are actually hot spots for catching a zoonotic disease. In 2005, 63 people contracted E. coli O157:H7 from a Florida petting zoo exhibit.

In this study, researchers at the Cary Institute of Ecosystem Studies and the University of Georgia combed through the available data on zoonotic disease transmission. Their work uncovered patterns that show hotspots for disease transmission.

Some of these patterns surprised study author Barbara Han. “I was rather surprised to see that hotspots of zoonotic diseases didn't match hotspots of biodiversity more closely. For example, there is high species diversity in the tropics, so I expected to see a similar pattern of more zoonotic parasites and pathogens in the tropics as well. We do find more zoonotic hosts in the tropics, but we find more zoonotic diseases in temperate regions, possibly because these diseases can occur in multiple host species”, says Han.

That’s not the only surprise from the study. It turns out that more primates are zoonotic hosts than rodents. (See, stop giving rodents such a hard time.) Bats also carry the fewest zoonotic diseases. (Bats, you’re off the hook). Last, but not least, bacteria were the most abundant pathogens carried by mammals. (Sorry bacteria.)

According to Han, "understanding where animals are distributed and why may not seem applicable to our day-to-day lives … but the big breakthroughs that we need as a society (e.g., forecasting where the next zoonotic disease may emerge) rely on exactly this kind of basic scientific knowledge."
 
 
 
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 23, 2020
Genetics & Genomics
A Human Protein Can Mutate SARS-CoV-2, But It Can Change Back
JUL 23, 2020
A Human Protein Can Mutate SARS-CoV-2, But It Can Change Back
One way the human body can try to fight the coronavirus is by mutating it; these mutations seem to disrupt it. But the v ...
AUG 02, 2020
Microbiology
Examining the Existence of Organelles in Bacteria
AUG 02, 2020
Examining the Existence of Organelles in Bacteria
Cells can be grouped into two general categories: prokaryotic, which make up microbes like bacteria and archaea, or euka ...
AUG 31, 2020
Microbiology
Finding a Weakness in an Emerging Drug-Resistant Pathogen
AUG 31, 2020
Finding a Weakness in an Emerging Drug-Resistant Pathogen
Candida auris is a fungal pathogen that was initially reported in 2009. Its origins are unclear, but it has been found i ...
SEP 09, 2020
Clinical & Molecular DX
Swallow the Pill, Discover the Bugs Within
SEP 09, 2020
Swallow the Pill, Discover the Bugs Within
The 30-foot long human gastrointestinal tract consists of tissues and organs that work in concert to digest our food. Th ...
SEP 11, 2020
Chemistry & Physics
Indigenous fermentation processes require complex chemical reactions
SEP 11, 2020
Indigenous fermentation processes require complex chemical reactions
A study published in the Nature journal Scientific Reports uncovers the complex chemical processes behind aborigina ...
SEP 15, 2020
Microbiology
If They Must, Methane-Eating Microbes Will Consume Ammonia
SEP 15, 2020
If They Must, Methane-Eating Microbes Will Consume Ammonia
There are many different kinds of microbes, and some can use unusual substances to survive. Methanotrophs, for example, ...
Loading Comments...