AUG 25, 2016 10:55 AM PDT

Lyme Disease Moves Through the Bloodstream Like our Cells

WRITTEN BY: Carmen Leitch
Researchers have learned more about how Lyme disease invades the body, and will publish their findings September 6 in Cell Reports. They’ve found that the bacteria that spreads the disease moves through blood vessels in a way like our own white blood cells do; by sticking to the walls of blood vessels, they can move at their own pace rather than being swept up in the flow. The video below explains the research.
“It’s really an amazing case of convergent evolution,” commented Wendy Thomas, a Biologist at the University of Washington in Seattle who did not participate in the study. “There’s little structural similarity between the molecules involved in these behaviors, and yet their behavior is the same.”
Lyme disease is caused by the bacterium Borrelia burgdorferi, transmitted to humans through infected tick bites. Typically, the disease starts with non-specific symptoms like headache, fever and fatigue. A rash called erythema migrans can be indicative of Lyme, but doesn’t appear in all cases. If affected people don’t get treated, more serious health problems in joints, the nervous system and the heart can result.

While it’s known that B. burgdorferi can move in and out of the blood stream, the details of that process were not well understood before now.
Lyme Disease Bacteria, Borrelia burgdorferi / Credit: NIAID
To get a good look at what was happening, Moriarty and her team created flow chambers that were lined with human endothelial (blood vessel) cells. With powerful microscopes and the aid of a computer program, they were able to visualize the migration of bacteria along this model bloodstream.

The B. burgdorferi bacterium uses a protein called BBK32 to form what’s called catch bonds with the endothelial cells, in the same way that white blood cells do. Those catch bonds only get stronger when subjected to mechanical stress, keeping bacteria latched on even when under pressure. The catch bonds are also assisted by structures that even out the burden placed on the bonds.
Those catch bonds also allow the bacterium to keep moving, which it must do in order to cause infection. One bond gets broken as another stays attached, and the load is advanced forward in the process, in a stepwise fashion. Again, this is like the movement of white blood cells.

B. burgdorferi also has flagella at its disposal to control its movement in the bloodstream. Like a drill bit, the flagella wrap around the bacteria to propel it forward, with a stronger force than those opposing it.

“What that basically means is that bacteria are strong enough to overcome the force that they experience under blood flow, which means they should be theoretically strong enough to get to a spot where they can exit the bloodstream,” says Moriarty.  These features might enable Lyme bacteria to control their entry and exit from the bloodstream, such that they then infect other organs.

Source: ScienceNews, CDC
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 17, 2019
Microbiology
NOV 17, 2019
Lab Mice Born to Moms From the Wild Make Better Research Models
A standard research mouse genotype was preserved while generating a natural microbiome by using wild mice as surrogates....
NOV 17, 2019
Microbiology
NOV 17, 2019
Ticks May Spread Multiple Diseases in One Bite
The incidence of tick-borne diseases is on the rise, and ticks present a growing threat to public health worldwide....
NOV 17, 2019
Microbiology
NOV 17, 2019
A Quick Squirt of Sanitizer May Not be Enough to Protect Against the Flu
Alcohol-based hand sanitizers are thought to provide protection from pathogens that spread in saliva and mucus. But is that true?...
NOV 17, 2019
Microbiology
NOV 17, 2019
The Rare Syndrome That Causes People to Produce Alcohol in Their Gut
Some people are affected by a syndrome in which their gut microbes generate enough alcohol to cause symptoms of intoxication....
NOV 17, 2019
Microbiology
NOV 17, 2019
Probiotics Can Help Save Honey Bees From a Fatal Disease
Probiotics have been shown to protect honey bees from a pathogenic bacterium that can wreak havoc on hives....
NOV 17, 2019
Microbiology
NOV 17, 2019
UVB Exposure Can Change the Gut Microbiome
The research may help explain why UVB light appears to help protect against inflammatory disorders....
Loading Comments...