MAR 04, 2015 09:15 AM PST

Huge Virus Exposed in 3-D with X-ray Laser

WRITTEN BY: Judy O'Rourke
For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. The virus, called Mimivirus, is in a curious class of "giant viruses" discovered just over a decade ago.

The experiment establishes a new technique for reconstructing the 3-D structure of many types of biological samples from a series of X-ray laser snapshots.
This computerized rendering shows a cutaway view of a collection of about 200 X-ray patterns, produced in an experiment at SLAC's Linac Coherent Light Source X-ray laser. The images were combined to produce a 3-D rendering of an intact Mimivirus, a giant virus that was at first mislabeled as a bacterium because of its size.
"Ever since I started in this field of X-ray laser research, this has always been the dream - to acquire 3-D images of real biological samples," says Tomas Ekeberg, PhD, biophysicist, Uppsala University, Sweden, and lead author of the study, published March 2 in Physical Review Letters. "This is fantastic - it's a breakthrough in our research."

Mimivirus is so big - its volume is thousands of times larger than the smallest viruses and even larger than some bacteria - that it was misclassified as a bacterium until 2003. Subsequent discoveries have found other giant viruses, some of which are even larger.

Mimivirus is also genetically complex, with nearly 1,000 major genes compared to only a handful in the HIV virus.

Scientists have been trying to determine the inner structure of these giant viruses to learn more about their origins: For example, did they borrow genes over time from the host organisms they infect, like amoebas? Did they precede cell-based life or devolve from cell-based organisms?

"We can see quite clearly that the inside of these viruses is not uniform," Ekeberg says.

This same general feature had also been seen before using an electron-based imaging technique with frozen samples, and LCLS allows studies of viruses and other biological samples in a more natural, intact state. Researchers said that LCLS shows promise for achieving sharper images that reveal more inner details in the future because of the uniquely intense, penetrating power of its X-rays.

The same technique was recently used to study bacterial cell structures. LCLS managers have launched an initiative with the scientific community to improve techniques for imaging intact, biological particles that are difficult to study.

"The next Holy Grail is to study large, single proteins at LCLS," says Janos Hajdu, PhD, professor, biophysics, Uppsala, and a pioneer in biological particle imaging.

[Source: SLAC National Accelerator Laboratory]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
OCT 23, 2019
Immunology
OCT 23, 2019
How to Kill Superbugs
https://www.technologynetworks.com/immunology/news/enhancing-the-infection-fighting-potential-of-natural-products-321553...
OCT 23, 2019
Microbiology
OCT 23, 2019
Lab Mice Born to Moms From the Wild Make Better Research Models
A standard research mouse genotype was preserved while generating a natural microbiome by using wild mice as surrogates....
OCT 23, 2019
Genetics & Genomics
OCT 23, 2019
A Pathogen That Has Evolved to Spread in Hospitals
Clostridium difficile is the primary cause of infections that are acquired in hospital settings; it causes diarrhea and intestinal inflammation....
OCT 23, 2019
Neuroscience
OCT 23, 2019
Lab-grown mini brains make humanlike 'brain waves'
When a fetus reaches six months old, it starts to produce electrical signals resembling brain waves. Now, we know that clusters of lab-grown human brain ce...
OCT 23, 2019
Genetics & Genomics
OCT 23, 2019
Gene Mutations Link Flu Infections and Heart Trouble
Sometimes people develop life-threatening heart complications when they're infected with the flu....
OCT 23, 2019
Microbiology
OCT 23, 2019
Salmonella Becomes More Deadly and Drug-Resistant in Central Africa
An international team of scientists has identified strains of extensively drug-resistant Salmonella typhimurium....
Loading Comments...