SEP 10, 2016 2:46 PM PDT

Bacteria can Share & Recycle Ammunition in Battle

WRITTEN BY: Carmen Leitch
A classic defense mechanism of bacteria is the type 6 secretion system, T6SS, is a sort of molecular spear gun. Researchers have now learned more about how it works in tight groups of related bacteria and have published their work in the latest edition of Cell. It appears that bacteria of a related strain can reuse the ammunition after it’s been fired, both conferring the defense on bacteria that lack it as well as adding to the existing aresenals. If you’d like to get more details about the T6SS, watch the video below.
 

 
The system has been studied extensively and is a well described structure, resembling an inverted phage. It has a sort of pointy spear, surrounded by a flexible sheath that is firmly anchored to the cell.  "When bacteria fire their spear guns, the sheath rapidly contracts in just a few milliseconds and ejects the spear out of the cell into by-standing bacteria. The attackers then recycle the harpoon proteins remaining in the cell," explained one author of the work, Professor Marek Basler, an infection biologist at the Biozentrum of the University of Basel.
 
The investigators performed their research on the cholera pathogen, Vibrio cholerae, showing for the first time that these bacteria use a form of recycling, and sharing resources with related bacteria in need. By mixing bacteria deficient in the protein components of T6SS with normal bacteria, they demonstrated that the T6SS functions are provided to the deficient bacteria. You can see a video of their work below.
 

 
"The special thing about Vibrio cholerae is that it assembles spear guns all the time and fires them aimlessly," said Andrea Vettiger, the other author of the study. "If one of T6SS-defecient bacteria is randomly hit, it disassembles the spear gun to its individual components, the shaft and tip proteins, and reassembles its own functional harpoon; also the translocated tip-linked toxins can be recycled by the attacked cell. And even bacteria that no longer produce any proteins can assemble a T6SS by reusing the harpooned proteins provided by their neighboring sister cells."
 
The researchers also learned that related strains of bacteria are able to unite and form a defense against microbial foes. For example, two strains of Vibrio can team up to kill a competitor. Additionally, they can do that even if one strain in the team lacks the T6SS capabilities, through the demonstrated use of shared resources.
 
Vibrio cholerae bacteria (green) recycle T6SS proteins of the attacking sister cells (red) to build their own spear gun (light green intracellular structure). / Credit University of Basel
 
The scientists believe their discovery could be a very important phenomenon. "Although we have only observed this interbacterial complementation under laboratory conditions, we are convinced that this form of cooperation plays an important role in nature and provides some bacterial communities with a survival advantage," concluded Basler.
 
Sources: AAAS/Eurekalert! via University of Basel, Cell
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 19, 2020
Genetics & Genomics
JAN 19, 2020
Engineering Mosquitoes to Stop Dengue Virus Transmission
The dengue virus is transmitted by mosquitoes. It is found in over one hundred countries and threatens three billion people with a serious illness....
JAN 20, 2020
Microbiology
JAN 20, 2020
Microbes Create a More Sustainable Building Material
Concrete is the second most widely consumed resource on the planet (after water), and it has a massive carbon footprint....
JAN 28, 2020
Neuroscience
JAN 28, 2020
Gut Bacteria Influences Behavior in Young Children
Research now suggests that the presence of different gut bacteria may significantly impact children’s behavior, causing some to act out, and some to...
FEB 12, 2020
Microbiology
FEB 12, 2020
Using Genomics to Learn More About a Mumps Outbreak
Though vaccination rates are high, small mumps outbreaks sometimes still occur....
FEB 26, 2020
Microbiology
FEB 26, 2020
NIAID Tests Remdesivir as a Treatment for COVID-19
A case of coronavirus has now occured in the US in someone without a known link to an infected person or travel....
MAR 24, 2020
Cell & Molecular Biology
MAR 24, 2020
Certain Drugs May Raise the Risk of a Severe COVID-19 Infection
ACEIs and ARBs may make coronavirus infections worse, which can help explain why older adults are faring so much worse....
Loading Comments...