SEP 30, 2016 11:17 AM PDT

Fungus makes mosquitoes susceptible to malaria parasite

WRITTEN BY: Kerry Evans
This just in, there’s a fungus that makes mosquitoes more susceptible to malaria. Researchers at the Johns Hopkins Bloomberg School of Public Health found that the fungus - Penicillium chrysogenum - impairs a mosquito’s immune system. If you have a soft spot for mosquitoes, you’ll be happy to know that this fungus doesn’t actually make the little guys sick.
Electron microscopy of Penicillium chrysogenum.
First, a quick review of malaria. Humans get malaria when they are bitten by an Anopheles mosquito that is infected with the Plasmodium parasite. Malaria is, as you no doubt know, a big deal. The World Health Organization reports that in 2015 there were around 214 million cases of the disease worldwide. Among those cases, roughly 438,000 people died. There’s no vaccine for malaria (although researchers are working toward one). Until then, the use of bed nets is the best way to prevent the transmission of malaria.

So, how did researchers first identify this fungus? They isolated it from the midgut of Anopheles mosquitoes in Puerto Rico. Although this type of fungus is considered non-pathogenic, they wanted to know if it impacted mosquito survival in any way.

They added the fungus to a sucrose solution and fed it to mosquitoes. Then, they measured mortality over a 14-day period. The fungus had no effects on mosquito mortality. The next question was whether this fungus had any effect on Plasmodium infection - certain bacteria can cause mosquitoes to be resistant to Plasmodium, for example.

Once again, the researchers fed mosquitoes a sucrose solution containing the fungus. Then, they fed the mosquitoes a blood meal containing Plasmodium gametocytes. Surprisingly, the presence of the fungus in the mosquito midgut increased the number of Plasmodium oocysts found in the mosquitoes.

So, what about the fungus causes this to happen? The group found that the fungus secretes a heat-stable factor that affects Plasmodium infection. They came to this conclusion by heat-treating the fungus culture filtrate - once heat-treated, the filtrate did not enhance Plasmodium infection in the mosquitoes.

There’s more work to be done, but this is a pretty neat example of how microorganisms can affect each other (even indirectly). Not to mention, these findings could help researchers devise new methods and therapies that control malaria transmission. According to study author George Dimopoulos, “While this fungus is unlikely to be helpful as part of a malaria control strategy, our finding significantly advances our knowledge of the different factors that influence the transmission of malaria.”

Sources: Nature, Science Daily
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
SEP 30, 2018
Microbiology
SEP 30, 2018
These Microscopic Things Elude Our Eyes Every Day
We take much of what we can see for granted, but if your eyes had the observational power of a microscope, you’d probably look at the world very diff...
NOV 05, 2018
Microbiology
NOV 05, 2018
Potential Antidote to Botulism is Found
A microbe called Clostridium botulinum and sometimes two other strains of Clostridium bacteria can make a toxic chemical called botulism....
NOV 09, 2018
Cardiology
NOV 09, 2018
Lyme Disease And The Heart
In small-town New England, everyone knows the unique characteristic symptom of Lyme disease. A bulls-eye pattern rash around a tiny tick bite, infection gr...
NOV 21, 2018
Immunology
NOV 21, 2018
Yin and Yang of Malaria
Researchers determine the affect of preventative treatment for malaria on infants...
NOV 27, 2018
Videos
NOV 27, 2018
The Challenge of Creating a Vaccine for HIV
The CDC estimates that 1.1 million people in the US have HIV, and around 15% are unaware they have it....
DEC 08, 2018
Genetics & Genomics
DEC 08, 2018
The Plague May Have led to the Decline of Neolithic Settlements
An international team of European researchers has discovered a new strain of the bacteria that causes plague....
Loading Comments...