OCT 25, 2016 12:34 PM PDT

Cranberries - the new antibiotics?

WRITTEN BY: Kerry Evans
A cranberry a day keeps the doctor away. McGill University researchers found that cranberry extract helped slow the spread of a bacterial infection in fruit flies.
 
The group, led by Eric Déziel and Nathalie Tufenkji, knew that proanthocyanidins (PCAs) found in cranberries have antimicrobial properties. Their most recent work shows that PACs work by keeping bacteria from effectively communicating with each other, diminishing their virulence. "This means that cranberries could be part of the arsenal used to manage infections and potentially minimize the dependence on antibiotics for the global public”, says Tufenkji.
Cranberry extract has antimicrobial properties.
They found that treating cultures of Pseudomonas aeruginosa with cerPAC (cranberry extract rich in proanthocyanidins) decreased the activity of key virulence factors. Specifically, cerPAC decreased the activity of LasA (staphylolytic protease), LasB (elastase), and AprA (alkaline protease), but bacterial growth was not affected. 
 
Next, they determined if cerPAC affected the survival of fruit flies infected with P. aeruginosa. The researchers infected fruit flies with P. aeruginosa and then treated them with cerPAC. The cerPAC treatment increased survival from 168 hours (without cerPAC) to 240 hours.
 
So, what does this cranberry extract actually do to the bacteria? Quorum sensing, a process that bacteria use to sense environmental changes and communicate with their neighbors, helps regulate many virulence factors for P. aeruginosa. With this in mind, the group hypothesized that cerPAC interferes with some aspect of quorum sensing. Indeed, they found that cerPAC decreased the production of two of P. aeruginosa’s quorum sensing molecules, 3-oxo-C12-HSL and C4-HSL.
 
According to Déziel, "cranberry PACs interrupt the ability for bacteria to communicate with each other, spread, and become virulent - a process known as quorum sensing. The cranberry extract successfully interferes with the chain of events associated with the spread and severity of chronic bacterial infections."
 
Cranberry extract doesn’t just affect P. aeruginosa. The group showed that cerPAC inhibited quorum sensing in two other species, Burkholderia ambifaria and Chromobacterium violaceum. In this case, cerPAC interferes with the production of the quorum sensing molecules C8-HSL and C6-HSL, respectively.
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 11, 2019
Genetics & Genomics
NOV 11, 2019
A Pathogen That Has Evolved to Spread in Hospitals
Clostridium difficile is the primary cause of infections that are acquired in hospital settings; it causes diarrhea and intestinal inflammation....
NOV 11, 2019
Microbiology
NOV 11, 2019
New Strain of Strep Linked to Rise in Infections
Streptococci are a group of Gram-positive microbes that include pathogens that can cause mild and serious infections....
NOV 11, 2019
Health & Medicine
NOV 11, 2019
Honey As An Antibacterial Against Methicillin-Resistant Staphylococcus Aureus
Honey has been used for its medicinal properties for thousands of years to treat wound infections, gastrointestinal ailments, and burns. Because of th...
NOV 11, 2019
Microbiology
NOV 11, 2019
A Quick Squirt of Sanitizer May Not be Enough to Protect Against the Flu
Alcohol-based hand sanitizers are thought to provide protection from pathogens that spread in saliva and mucus. But is that true?...
NOV 11, 2019
Microbiology
NOV 11, 2019
Using CRISPR to Alter or Kill Bacteria
In recent years, the gene editing tool CRISPR/Cas9 has been applied to a wide variety of different organisms, and now, bacteria....
NOV 11, 2019
Microbiology
NOV 11, 2019
Rotavirus Infection Can be Prevented or Cured by a Gut Microbe
We share the world and our bodies with microorganisms, and the ones that live in our gut exert a significant impact on our physiology....
Loading Comments...