OCT 28, 2016 11:36 AM PDT

Building a virtual bacterium

WRITTEN BY: Kerry Evans
Ever wish you could predict the future? Researchers at UC Davis designed a computer model to do just that - if you’re E. coli, that is.
 
The model allows researchers to predict how E. coli’s metabolic pathways will respond to various experimental conditions. Think of it as a virtual science experiment. “We are exploring a vast space here”, says study author Ilias Tagkopoulos. “Our aim is to create a crystal ball for the bacteria, which can help us decide what is the next experiment we should do to explore this space better.”
E. coli is commonly used in research.
The work started by creating Ecomics, a meta-database for E. coli. Ecomics houses 4,389 gene expression profiles from 649 different conditions. It took a week to compile all of these data into Ecomics, but that’s nothing compared to the 2 years it took to build the Multi-Omics Model and Analytics (MOMA) platform. The platform actually consists of four different layers - transcriptome, proteome, metabolome, fluxome, and phenome. These layers were then integrated into a single model. “The number of layers, and the amount of data involved are unprecedented”, says Tagkopoulos.
 
The group needed some powerful computers to wrangle all that data. They received a grant from the National Science Foundation to use Blue Waters - one of the most powerful supercomputers in the world.  
It sounds impressive, but what’s the point? The new tool could be used by researchers to make a dry run of their experiments. Instead of investing the time and money to run an experiment in multiple growth conditions, Ecomics and MOMA could help identify the best growth condition for a specific experiment. 

So, does it work? It sure does. The researchers pitted their model - MOMA - against two others, ME-Model and EBA, to see how well it could predict changes in gene expression in 16 knockout mutants. MOMA outperformed ME-Model by 38-280% and EBA by 47-311%.
 
They aren’t stopping at E. coli, however. The group has plans to build similar predictive models for Salmonella enterica and Bacillus subtilis, two species that cause foodborne illnesses. “We’re living in an amazing era at the intersection of computer science, engineering, and biology”, says Tagkopoulos. “It’s very interesting to me.”
 
Sources: Nature Communications, UC Davis
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 18, 2019
Microbiology
OCT 18, 2019
Engineering Bacteria to be Tumor Assassins
Some cutting-edge techniques are being combined to create powerful and innovative therapeutics....
OCT 18, 2019
Microbiology
OCT 18, 2019
Some Microbes Can't be Washed off of Apples
There may be tangible benefits to selecting organic fruits....
OCT 18, 2019
Microbiology
OCT 18, 2019
Colombia Declares a State of Emergency as Banana Fungus Reaches the Americas
Bananas: the world's most popular fruit, a major source of food for millions of people, and now, seriously threatened by fungus....
OCT 18, 2019
Microbiology
OCT 18, 2019
Cataloging the Microbial Genes in the Human Microbiome
The human body carries a large community of microbes, and the ones living in our gastrointestinal tract exert a powerful influence on our biology....
OCT 18, 2019
Microbiology
OCT 18, 2019
Reducing Antibiotic Use Still Critical, but Resistance Spreads Even Without the Drugs
Antibiotic use would have to be reduced by 80% in order to effectively curtail the spread of antibiotic-resistant microbes in the River Thames....
OCT 18, 2019
Neuroscience
OCT 18, 2019
Alzheimer's to be Diagnosed from Pupil Dilation
Researchers from the University of California have found a low-cost, non-invasive method to aid in diagnosing Alzheimer’s Disease (AD) before cogniti...
Loading Comments...