JAN 04, 2017 12:39 PM PST

Silver to the rescue!

WRITTEN BY: Kerry Evans

Osteomyelitis is a serious bone infection, often caused by the bacterium Staphylococcus aureus. These infections are difficult to treat because S. aureus forms tough biofilms and is often resistant to antibiotics - take MRSA, for example.

MRSA often causes osteomyelitis.

Osteomyelitis can occur when bacteria from the blood or nearby tissue infiltrate bone. Alternately, implanted medical devices, such as artificial joints, can be contaminated with bacteria. Most cases of osteomyelitis require a surgeon to remove portions of the infected bone, and patients require intravenous antibiotics for up to six weeks.    

A collaborative group of investigators from the University of North Carolina at Chapel Hill, North Carolina State University, Silpakorn University in Thailand, and the University of Missouri, Columbia, previously designed a biocompatible scaffold that contains silver ions - designed to kill bacteria. The scaffold is made up of polylactic acid (PLA) nanofibers and coated with a proprietary polymer that contains silver nitrate.

Silver, among other metals, has been used to kill bacteria or prevent their growth for centuries - this phenomenon is called the “oligodynamic effect”. The precise mechanism behind silver’s antibacterial activity remains unclear, however. Silver may bind to and inactivate proteins within bacterial cells, or it may damage the cell wall of bacteria. Either way, it is considered relatively non-toxic to mammalian cells.

The researchers hope the scaffolding could be placed on infected bone to help fight infection and promote healing. The scaffold could also be used during orthopedic surgery to prevent infection. The first step however, was to see if the silver-seeded scaffold could actually kill bacteria.

The researchers placed either a control PLA scaffold (without silver) or a PLA scaffold with silver onto a lawn of MRSA. Only the PLA scaffold containing silver killed the surrounding bacteria, producing a clear zone of inhibition around the scaffold.

Next, they added human adipose-derived stem cells (hASCs) to the mix. These cells were added to the scaffold and induced to differentiate into bone cells. When MRSA was cultured with the PLA scaffold containing hASCs, but no silver, the bacteria proliferated rapidly over 2 days, and continued to proliferate steadily for 2 weeks. If silver was added to the mixture of PLA, hASCs, and MRSA, the bacteria proliferated much more slowly over the first 2 days, but proliferation picked up at day 5 of 13.

Although the results of their second experiment were not as impressive as their first, these data demonstrate that a silver-seeded scaffold could help resolve, or at least slow, cases of osteomyelitis. According to journal editor Peter C. Johnson, “hybrid therapeutic approaches such as this combination of a regenerative and anti-infective platform are transforming our attack on complex musculoskeletal diseases.”

Sources: Tissue Engineering, MicrobeWiki, EurekAlert, Mayo Clinic, Wikipedia

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 01, 2018
OCT 01, 2018
A Virus That can Help Ensure Water is Clean
It's estimated that 780 million people worldwide don't have access to clean drinking water....
OCT 16, 2018
OCT 16, 2018
Can the Bacteria That we Carry Give us Special Powers?
The bacteria that we carry in and on our bodies can affect our health and well-being in many ways....
NOV 05, 2018
Drug Discovery
NOV 05, 2018
Anti-Parasitic Drug Improves Long-term Clinical Outcomes in Chagas Disease
In a recent study published in PLOS Neglected Tropical Diseases, an anti-parasite drug by the name of ‘benznidazole’ may hold potential in impr...
NOV 13, 2018
NOV 13, 2018
Bacteria Offers Solution to Inflammation
A team of researchers surveys the mutualistic relationship between gut bacteria and host in regards to gut inflammation in zebrafish...
NOV 28, 2018
Cell & Molecular Biology
NOV 28, 2018
Microbes with an Expanded Genetic Code can Generate new Proteins with Special Properties
In recent years, scientists have created microbes that incorporate new nucleotide bases and new amino acids....
DEC 07, 2018
DEC 07, 2018
A Common Pathogen: Norovirus
You've probably heard of norovirus before; it's a highly contagious family of viruses that can sicken large groups of people....
Loading Comments...