MAR 04, 2017 02:19 PM PST

New drugs for an old bug

WRITTEN BY: Kerry Evans

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis. Despite the advances of modern medicine, there are about 10 million new cases of tuberculosis each year, and over 1 million people die from it.

 

New drugs to treat tuberculosis?

 

Like many bacteria, some strains of M. tuberculosis have become resistant to traditional treatments. Luckily, researchers at the University of Warwick are working to develop new treatments for tuberculosis based on compounds produced by soil bacteria. Chemicals called sansanmycins are produced by species of Streptomyces that live in the soil.

 

The researchers generated a library of dihydrosansanmycin analogues and tested their ability to kill M. tuberculosis. They also tested how selective these drugs are - whether they are toxic to mammalian cells or other species of bacteria. Ideally, the drugs would be selective only for M. tuberculosis.

 

The group successfully isolated a subset of dihydrosansanmycins that do not harm mammalian cells (HEK293 cells) and that do not kill other bacteria. Specifically, they tested the drug against common so-called ESKAPE pathogens that often cause infections (these include E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhimurium). Surprisingly, the drug library only exhibited modest activity against E. coli and Pseudomonas aeruginosa, leaving the other bacteria unharmed.

 

So, just how do these new drugs work to kill M. tuberculosis? The researchers knew that these types of antibiotics (in the nucleoside family) were thought to inhibit an enzyme called MurX, a translocase that is involved in the synthesis of lipiI I (lipid I helps build the bacterial cell wall).

 

They used a collection of assays to measure MurX activity and found that their library of dihydrosansanmycins inhbited MurX to varying degrees (a range of 9-100% inhibition). However, those analogues that inhibited MurX were the same ones that were able to kill M. tuberculosis!

 

Then, because M. tuberculosis is an intracellular pathogen, they wanted to see if selected dihydrosansanmycins could kill intracellular M. tuberculosis. For this experiment, they infected THP-1 macrophages with M. tuberculosis, added three of the most potent dihydrosansamycin analogues, and assayed mycobacterial growth. Sure enough, all three of the drugs inhibited the growth of the intracellular bacteria!

 

Finally, they determined how stable the analogues were in human and mouse plasma and human and mouse liver microsomes. They found that each analogue of interest was stable in both plasma (with a half life of more than 7 hours) and liver microsomes (half life of over 160 min).

 

This is all great news - the researchers plan to further refine these sansanmycins into potential antibiotics.


Sources: Nature Communications, Science Daily

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 17, 2019
Microbiology
NOV 17, 2019
Colombia Declares a State of Emergency as Banana Fungus Reaches the Americas
Bananas: the world's most popular fruit, a major source of food for millions of people, and now, seriously threatened by fungus....
NOV 17, 2019
Microbiology
NOV 17, 2019
The Microbiome is Affected by the Genome of Its Host
Many factors influence the composition of our microbiome, including our genes....
NOV 17, 2019
Cell & Molecular Biology
NOV 17, 2019
Why TB and HIV Occur Together So Often
Tuberculosis (TB) is among the world’s leading causes of death, and is the primary cause of death in people who are HIV-positive....
NOV 17, 2019
Microbiology
NOV 17, 2019
The Antimicrobial Power of Mucus is Revealed
We produce several liters of mucus every day to cover more than 200 square meters in the human body....
NOV 17, 2019
Microbiology
NOV 17, 2019
UVB Exposure Can Change the Gut Microbiome
The research may help explain why UVB light appears to help protect against inflammatory disorders....
NOV 17, 2019
Cancer
NOV 17, 2019
Specific gut bacteria linked to bowel cancer
New research suggests that the presence of a certain kind of gut bacteria can increase the risk of bowel cancer by as much as 15%. The research is importan...
Loading Comments...