MAR 15, 2017 07:27 PM PDT

Deadly E.coli can Disrupt Protein Synthesis in Other Microbes

WRITTEN BY: Carmen Leitch
2 10 551

Researchers at UC Santa Barbara have investigated how a specific, pathogenic strain of Escherichia coli, EC869, can destroy other bacteria nearby. An EC869 infection can cause diarrhea or hemorrhagic colitis in humans, and can secrete toxins that inhibit the growth of neighboring bacteria. In their previous research, these investigators have found that another strain of E. coli needed to bind to a 'permissive factor' to activate its toxin. The scientists wanted to find out if EC869 also needed to interact with protein in a target cell for toxin activation. They have reported their findings in the Proceedings of the National Academy of Sciences.

Organisms living in communities have often evolved ways to communicate with one another, including bacteria. While they might not use a cell phone, they have relationships and interactions that can exhibit both competition and cooperation. Microbes of different species have intraspecies exchanges that occur in the context of contact-dependent growth inhibition (CDI) systems, which control cellular functions through cell-to-cell contact. They can be observed in a large number of different gram-negative bacteria, such as Escherichia coli, which can be a deadly human pathogen.

There are many toxins that act on a cellular process called translation, in which the molecular intermediary of DNA, RNA, is read by the cellular machinery that manufactures a protein. Often, toxins act to perturb this process. Some toxins, noted lead author Allison Jones, disrupt transfer RNAs (tRNAs), molecules that turn mRNA sequences into protein.

"We discovered that a class of these tRNA-cleaving poisons intoxicates cells differently from previous toxins in that they hijack two essential factors involved in protein synthesis and use them to find their cellular victims," said Jones, a doctoral candidate in UCSB's Department of Molecular, Cellular and Developmental Biology (MCDB).

Jones and colleagues found that the EC869 toxin associates with elongation factor Tu (EF-Tu, which is animated in the video above), the most prevalent protein in bacteria. During protein synthesis, EF-Tu binds to tRNA molecules. This relationship has two outcomes; the toxin gets activated, and helps it focus on the tRNA molecule targets. EC869 also acts only on two specific tRNA molecules, cleaving those specifically out of 46 different types within the cell.

"It appears that these toxins are riding piggyback on EF-Tu to find tRNAs and seem important for their own stabilization in the cell as well," said co-author of the work Fernando Garza-Sánchez, a MCDB staff research in the Hayes Lab. "However, in addition to EF-Tu, these toxins also require the presence of another elongation factor, EF-Ts."

"We were unsure of the role of EF-Ts, as the toxin does not appear to bind stably to it," Jones explained.

Because this class of toxins only acts on certain tRNA molecules, there are some clues to its actions. The researchers have suggested that the toxins remain bound to EF-Tu while EF-Ts tries out different tRNA molecules until the right one comes along. When the proper tRNA is bound, it is then cleaved, destabilized and released.

"Our research lends support to an unestablished role for EF-Ts—that of having an active role in delivering tRNAs to EF-Tu during protein synthesis," Jones said. "It will be interesting to see if the interaction of this toxin with members of the protein synthesis apparatus plays a role in intercellular communication."

If you want to know more about how translation works, check out the following video.

 

Sources: Phys.org via UCSB, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 06, 2018
Microbiology
JUN 06, 2018
Beating Stress with Bacteria
Microbes might be useful in the treatment of mental disorders like anxiety, depression and PTSD.
JUN 07, 2018
Microbiology
JUN 07, 2018
Assessing the Germs on Airplanes
The bacterial community on planes doesn't make for scary headlines.
JUN 22, 2018
Cell & Molecular Biology
JUN 22, 2018
New Type of Photosynthesis is Discovered
This work will change textbooks, and may impact a variety of fields, including the search for extraterrestrial life.
JUL 14, 2018
Microbiology
JUL 14, 2018
Little-known STI may Become a Superbug
Scientists are growing concerned about a common sexually transmitted infection that not many people know about - MG or MGen.
JUL 29, 2018
Microbiology
JUL 29, 2018
Revealing why Sepsis Causes Organs to Fail
The Staphylococcus aureus bacterium can cause devastating illnesses - called staph infections - and lead to organ failure.
AUG 06, 2018
Microbiology
AUG 06, 2018
How Undetected Viral Infections Impact our Health
It seems that when people are infected with CMV but don't have any obvious symptoms, there may still be effects.
Loading Comments...