APR 02, 2017 09:18 AM PDT
Giant virus requires team to retrofit microscope
3 10 1337

Image Credit: Michigan State

In order to map one of the world’s largest viruses, scientists took a DIY approach to build a retrofitted cryo-electron microscope.

“If the common cold virus is scaled to the size of a ladder, then the giant Samba virus is bigger than the Washington Monument,” says Kristin Parent, assistant professor of biochemistry and molecular biology at Michigan State University and coauthor of the paper in the journal Viruses. “Cryo-EM allowed us to map this virus’ structure and observe the proteins it uses to enter, or attack, cells.”

It seems counterintuitive that bigger organisms are harder to see, but they are when using cryo-electron microscopy. That’s because scientists usually use these microscopes to look at thin specimens. The microscopes can’t decipher larger organisms to reveal their biological mechanisms. For thick samples, scientists see only dark gray or black blobs instead of seeing the molecular framework.

Cryo-EM allowed Parent’s team to image the giant Samba virus and understand the structures that allow it to enter an amoeba. Once inside, Samba opens one of its capsid layers and releases its nucleocapsid—which carries the genetic cargo that sparks an infection. While Samba isn’t known to cause any diseases in humans, its cousin, the mimivirus, may be a culprit for causing some respiratory ailments in humans.

“If you scoop up a handful of water from Lake Michigan, you are literally holding more viruses than there are people on the planet,” says Parent, who published the paper with Jason Schrad and Eric Young, biochemistry and molecular biology graduate students. “While scientists can’t study every virus on Earth, the insights we glean from viruses like the giant Samba can help us understand the mechanisms of other viruses in its family, how they thrive, and how we can attack them.”

As bacteria become more resistant to antibiotics, looking for new ways to fight diseases will continue to grow in importance. Parent’s lab also studies how bacteria-infecting viruses enter cells using this method, which could potentially lead to new antibacterial treatments. Yet the world’s best cryo-EM microscope costs more than $5 million. Limited by funds but not drive, Parent was able to upgrade an existing microscope at MSU to do cryo-EM.

She retrofitted a cryostage onto a traditional transmission electron microscope. This keeps viruses frozen in liquid nitrogen while they’re under study. Parent and her team then added a Direct Electron DE-20 detector, a powerful camera.

Parent didn’t invent cryo-EM, but the cutting-edge microscopy has applications across many fields, from those addressing a single protein to others studying entire cells. Virtually anyone studying complex molecular machines can advance their work with this tool, Parent adds.

Source: Michigan State University

Original Study DOI: 10.3390/v9020030

This article was originally published on Futurity.org.

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
FEB 27, 2018
Space & Astronomy
FEB 27, 2018
Elon Musk's Space-Bound Tesla Carries Heaps of Earthly Bacteria
Elon Musk hyped February’s Falcon Heavy launch up with a unique payload: his cherry-red Tesla Roadster electric car. While just about everything went
MAR 29, 2018
Genetics & Genomics
MAR 29, 2018
Learning From the Frogs That Resisted Mass Extinction
Learning more about epidemics is critical for a growing human population that may face such a crisis in the future.
MAR 30, 2018
Microbiology
MAR 30, 2018
Towards the Creation of Living Machines
Some bacteria can 'eat' electricity or 'breathe' rocks; researchers are learning how to use them to create sustainable energy.
APR 25, 2018
Microbiology
APR 25, 2018
Cleaning out Gut Bacteria may Improve Heart Failure
We have as many bacterial cells in our bodies as we do human cells, and those bacteria have a powerful impact on our health.
MAY 16, 2018
Microbiology
MAY 16, 2018
The Structure of a Bacterial Protein Supercomplex is Revealed
Researchers isolated a supercomplex that acts as a kind of battery and helps generate energy for bacteria.
MAY 25, 2018
Microbiology
MAY 25, 2018
Rise of Antibiotic Resistance Linked to Climate Change
There are several factors blamed for the rise of antibiotic resistance, and now it seems that climate change and population density may play a role.
Loading Comments...