MAR 23, 2015 1:32 PM PDT

Microbes Make Anti-Obesity Molecule

WRITTEN BY: Will Hector
Microbes may just be the next diet craze. Researchers have programmed bacteria to generate a molecule that, through normal metabolism, becomes a hunger-suppressing lipid. Mice that drank water laced with the programmed bacteria ate less, had lower body fat and staved off diabetes -- even when fed a high-fat diet -- offering a potential weight-loss strategy for humans.

The team will describe their approach at the 249th National Meeting & Exposition of the American Chemical Society (ACS).

Obesity strongly increases the risk for developing several diseases and conditions, such as heart disease, stroke, type 2 diabetes and some types of cancer. One in three Americans is obese, and efforts to stem the epidemic have largely failed. Lifestyle changes and medication typically achieve only modest weight loss, and most people regain the weight. In recent years, numerous studies have shown that the population of microbes living in the gut may be a key factor in determining the risk for obesity and related diseases, suggesting that strategically altering the gut microbiome may impact human health.

One advantage to microbial medicine would be that it's low maintenance, says Sean Davies, Ph.D. His goal is to produce therapeutic bacteria that live in the gut for six months or a year, providing sustained drug delivery. This is in contrast to weight-loss drugs that typically need to be taken at least daily, and people tend not to take their medications as directed over time. "So we need strategies that deliver the drug without requiring the patient to remember to take their pills every few hours," Davies says.

For a therapeutic molecule, Davies and colleagues at Vanderbilt University selected N-acyl-phosphatidylethanolamines (NAPEs), which are produced in the small intestine after a meal and are quickly converted into N-acyl-ethanolamines (NAEs), potent appetite-suppressing lipids. The researchers altered the genes of a strain of probiotic bacteria so it would make NAPEs. Then they added the bacteria to the drinking water of a strain of mice that, fed a high-fat diet, develop obesity, signs of diabetes and fatty livers.

Compared to mice who received plain water or water containing control, non-programmed bacteria, the mice drinking the NAPE-making bacteria gained 15 percent less weight over the eight weeks of treatment. In addition, their livers and glucose metabolism were better than in the control mice. The mice that received the therapeutic bacteria remained lighter and leaner than control mice for up to 12 weeks after treatment ended.

In further experiments, Davies' team found that mice that lacked the enzyme to make NAEs from NAPEs were not helped by the NAPE-making bacteria; but this could be overcome by giving the mice NAE-making bacteria instead. "This suggests that it might be best to use NAE-making bacteria in eventual clinical trials," says Davies, especially if the researchers find that some people don't make very much of the enzyme that converts NAPEs to NAEs. "We think that this would work very well in humans."

The main obstacle to starting human trials is the potential risk that a treated person could transmit these special bacteria to another by fecal exposure. "We don't want individuals to be unintentionally treated without their knowledge," says Davies. "Especially because you could imagine that there might be some individuals, say the very young or old or those with specific diseases, who could be harmed by being exposed to an appetite-suppressing bacteria. So, we are working on genetically modifying the bacteria to significantly reduce its ability to be transmitted."

Source: Science Daily
About the Author
  • Will Hector practices psychotherapy at Heart in Balance Counseling Center in Oakland, California. He has substantial training in Attachment Theory, Hakomi Body-Centered Psychotherapy, Psycho-Physical Therapy, and Formative Psychology. To learn more about his practice, click here: http://www.heartinbalancetherapy.com/will-hector.html
You May Also Like
MAR 30, 2021
Neuroscience
Social Support and Compassion Linked to More Diverse Gut Bacteria
MAR 30, 2021
Social Support and Compassion Linked to More Diverse Gut Bacteria
Researchers from the University of California San Diego have found a link between how much social support, compassion, a ...
APR 12, 2021
Cell & Molecular Biology
Deep Subsurface Microbes Are "Living Fossils"
APR 12, 2021
Deep Subsurface Microbes Are "Living Fossils"
Researchers were shocked when they saw the results of a genetic analysis comparing various microbes from around the worl ...
APR 21, 2021
Microbiology
An Unknown Unknown - What's the State of Microbial Biodiversity?
APR 21, 2021
An Unknown Unknown - What's the State of Microbial Biodiversity?
Researchers have noted that we have a 'profound ignorance' about the state of the microbial populations of the world.
MAY 16, 2021
Microbiology
Organic Meat is Less Likely to Harbor Nasty Pathogens
MAY 16, 2021
Organic Meat is Less Likely to Harbor Nasty Pathogens
Organic food has been touted as healthier, but that's been debated. While meat that is produced organically now has to m ...
MAY 31, 2021
Microbiology
How a Retrovirus Can Turn Infectious
MAY 31, 2021
How a Retrovirus Can Turn Infectious
This image by Martin Obr, PhD of IST Austria shows a structure called a capsid that shields viral genetic material and h ...
JUN 08, 2021
Microbiology
Virus Seems to Spread From Salmon Farms to the Wild
JUN 08, 2021
Virus Seems to Spread From Salmon Farms to the Wild
Chinook salmon can be infected by a pathogen called Piscine orthoreovirus (PRV) that is thought to cause heart, liver, a ...
Loading Comments...