MAY 31, 2017 7:39 AM PDT

Too close for comfort - gut microbes and metabolic disease

WRITTEN BY: Kerry Evans

We all know that gut bacteria are great, right? Right. Well, they’re great as long as they keep their distance from our intestinal epithelial cells. New research shows that the closer bacteria get to gut epithelial cells in humans, the more likely people are to develop metabolic diseases.

 

New research links gut microbes, epithelial cells, and metabolic disease. Image: Collective Evolution

 

According to study author Andrew Gewirtz, “previous studies in mice have indicated that bacteria that are able to encroach upon the epithelium might be able to promote inflammation that drives metabolic diseases, and now we've shown that this is also a feature of metabolic disease in humans, specifically type 2 diabetics who are exhibiting microbiota encroachment."

 

They collected samples from patients at the Veterans Administration Hospital in Atlanta, Georgia, who were undergoing a routine colonoscopy. Colon biopsies were used to investigate the relationship between “microbiota-mucus-epithelial juxtaposition” and risk factors for metabolic disease. The study subjects were middle-aged, 86% were overweight, 45% were obese, and 33% had diabetes.

 

Although the standard preparation for a colonoscopy - consumption of polyethylene glycol - removes many intestinal bacteria, the researchers were able to use the remaining bacteria to calculate the average distance of the bacteria from the epithelium. In healthy subjects (those without diabetes and who were not obese) the gut bacteria were found in the outer layer of mucus. In obese people with diabetes, however, the bacteria were found in much closer proximity to the epithelial cell layer.

 

Interestingly, the microbiota-epithelial distance was inversely correlated with specific markers of metabolic syndrome, including body-mass index, fasting blood glucose level, and A1C. In subjects with type 2 diabetes, the microbiota-epithelial distance was reduced by nearly 3-fold! This decrease remained even if the obese subjects were removed from the analysis.

 

Next, the researchers were curious about whether there was a correlation between the presence of specific immune cells in the gut and the microbiota-epithelial distance. They found more B cells in subjects with diabetes, but there were no changes in the number of dendritic cells or macrophages (compared to people without diabetes). These findings suggest that a decrease in microbiota-epithelial distance may activate mucosal B cells.

 

According to the study authors, “we envision that defining the interrelationship between microbiota encroachment, B-cell responses, and metabolic disease may elucidate the pathophysiology of metabolic syndrome and perhaps eventuate in novel strategies to treat and/or prevent this condition.”

 

Source: Cellular and Molecular Gastroenterology and Hepatology, Science Daily

 

 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 29, 2020
Microbiology
APR 29, 2020
Bacteria Exposed to Antibiotics are 'Primed' to Gain More Resistance
Antibiotics are critical drugs that have saved millions of lives, but bacteria can also gain resistance to them, renderi ...
MAY 06, 2020
Cell & Molecular Biology
MAY 06, 2020
SARS-CoV-2 Can Infect Intestinal Cells
Once thought to cause symptoms that primarily affect the respiratory system, there has been evidence that the virus can ...
MAY 12, 2020
Microbiology
MAY 12, 2020
Understanding How Giant Viruses Can Infect Cells
Melting permafrost has been revealing some remarkably well-preserved and extremely old stuff, like a prehistoric puppy a ...
MAY 31, 2020
Microbiology
MAY 31, 2020
Zika Virus Infections in Early Life Can Cause Brain Damage
The Zika virus, which is transmitted by Aedes mosquitoes, poses significant risks to the developing fetus, and new work ...
JUN 09, 2020
Microbiology
JUN 09, 2020
Bacteria Will Commit Suicide to Spare Their Colony
In nature, strains of bacteria usually grow in colonies, and together, they are tougher.
JUL 03, 2020
Microbiology
JUL 03, 2020
Oxford COVID-19 Vaccine Enters Phase 3 Clinical Trials
Millions of people around the world have been infected with the coronavirus called SARS-CoV-2, which causes COVID-19. Th ...
Loading Comments...