AUG 02, 2017 11:34 AM PDT

Busting biofilms with magnetic phages

WRITTEN BY: Kerry Evans

Go-go-gadget phage-enhanced nanoparticles! Researchers at Rice University and the University of Science and Technology of China attached phages to magnetic nanoparticles - the complexes are able to penetrate protective biofilms and kill the bacteria within.

Magnetic nanoparticles deliver bacteria-killing phages.

Image: Getty

Sometimes killing bacteria isn’t the problem - it’s getting to the bacteria that can be difficult. Bacteria secrete biofilms made up of polysaccharides, DNA, and protein to keep themselves safe from environmental hazards. The problem is, biofilms are notoriously tough to penetrate.

Biofilms grow in all sorts of environments - soils, lakes, streams, even the human body. According to study co-author Pingfeng Yu, “biofilms can be very harmful in water distribution and storage systems since they can shelter pathogenic microorganisms that pose significant public health concerns and may also contribute to corrosion and associated economic losses.” Pathogens in the water? That’s never good news.

The researchers took a swing at these biofilms by engineering nanoparticles made up of carbon, sulfur, and iron oxide. Next, they attached amino groups to the nanoparticles. These amino groups allowed the phages (viruses that kill bacteria) to attach to the nanoparticles. The phages are actually attached to the nanoparticles by their heads - this leaves their tails free to make contact with bacteria.

The phage-enhanced nanoparticles couldn’t penetrate the biofilms effectively on their own, they needed an extra kick. Because the particles contained iron oxide, the researchers used a magnetic field to push the nanoparticles into the biofilm, giving the phages access to the bacteria. Interestingly, the researchers showed that it was the migration of the nanoparticles within the biofilm that disrupted its structure, making the bacteria more susceptible to phage attack.

They tested both the phage-enhanced nanoparticles and phages alone against biofilms of Pseudomonas aeruginosa and Escherichia coli. The nanoparticles killed over 90% of the bacteria, while the phages alone only killed 40%!

According to study author Pedro Alvarez, “this novel approach, which arises from the convergence of nanotechnology and virology, has a great potential to treat difficult-to-eradicate biofilms in an effective manner that does not generate harmful disinfection byproducts.”

Sources: Science Daily and Environmental Science: Nano

 

About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
FEB 05, 2020
Cell & Molecular Biology
FEB 05, 2020
Gut Bacteria Affect How the Colon Moves
The contraction and relaxation of muscles in the wall of the colon helps move food along and can become dysfunctional....
FEB 10, 2020
Microbiology
FEB 10, 2020
As Ebola Outbreak Continues, Researchers Create Faster Genetic Test
Since 2013, around 30,000 people have been infected during several outbreaks of Ebola in eight different countries....
FEB 14, 2020
Microbiology
FEB 14, 2020
Beneath the Surface, We All Carry the Same Microbes in Our Skin
Our skin is a critical barrier, and it is made up of three layers. It also carries a community of microbes - a skin microbiome....
FEB 18, 2020
Microbiology
FEB 18, 2020
Newly Found Glycopeptide Antibiotics Kill Bacteria in a New Way
The overuse and misuse of antibiotics and the adaptability of microbes has created a problem that people must solve....
MAR 03, 2020
Drug Discovery & Development
MAR 03, 2020
Drug Used for Ebola Virus Could Fight COVID19
Previously, the drug remdesivir was found to treat coronaviruses that cause Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (...
MAR 08, 2020
Microbiology
MAR 08, 2020
Cruise Ship Travel Should Now be Deferred, Says CDC
The CDC continues to issue new guidance related to the outbreak of the SARS-CoV-2 coronavirus and the COVID-19 illness it causes....
Loading Comments...