MAR 30, 2015 2:37 PM PDT

New Model Sheds Light on Managing Biofilms

WRITTEN BY: Judy O'Rourke
Researchers have have developed a new computational model that effectively simulates the mechanical behavior of biofilms.

The model devised by Mark Alber, PhD, applied mathematician, University of Notre Dame, and Robert Nerenberg, PhD, environmental biotechnologist, may lead to new strategies for studying a range of issues from blood clots to waste treatment systems.

"Blood clotting is a leading cause of death in the United States at this point," says Alber, adjunct professor of medicine, Indiana University School of Medicine, South Bend Ind. "We can now use a very fast and biologically relevant computational model to study deforming structures of the clots growing in blood flow."

The new model may be adapted to study clot formation in blood vessels, which can pose the risk of detaching and migrating to the lungs, a fatal event. Clots in healthy people usually stop growing and dissolve on their own. The clots, which result from genetic deficiencies, injury, inflammation, or such diseases as cancer and diabetes, can grow uncontrollably or develop irregular shapes, threatening to detach under the pressure of blood flowing through the vessels.

Biofilms are found on almost any moist surface including veins, water pipes, ship hulls, contact lenses, and hospital equipment. Biofilms are aggregates of bacterial cells embedded in self-produced extracellular polymer substances (EPS). Some biofilms are beneficial, treating wastewater and allowing the biodegradation of environmental contaminants. Others are harmful, fouling industrial equipment, corroding pipes and forming cavities in teeth. Biofilms are of particular concern in human infections, as bacteria in biofilms are much more resistant to antibiotics.

Since biofilms are often found in flowing systems, it is important to understand the effect of fluid flow on biofilms. Biofilms behave like viscoelastic materials. They first stretch elastically, then continue stretching and eventually break, like gum. Most past biofilm models were not able to capture this behavior or predict biofilm detachment. The new model allows for the simulation of this complex behavior. Simulations show that lower-viscosity biofilms are more likely to stretch and form streamers that can detach and clog nearby structures.

The new model can be used to devise new strategies to better manage biofilms.

"In the past, scientists typically studied bacteria in isolation. In more recent years, they have recognized the importance of biofilm structures and discovered how they are built, but earlier models failed to accurately predict the impact of inhomogeneous multicomponent structure of the biofilm including EPS, on its deformation under pressure from the fluid flow," says Alber, whose group developed the computational model in collaboration with the members of the Nerenberg laboratory.

"The new model simulations are important because they allow us to more realistically incorporate the viscoelastic properties of the biofilm," says Nerenberg, whose laboratory focuses on environmental biofilm processes. "This research will lead to major advances in our understanding of biofilm accumulation and persistence in natural and engineered systems."

[Source: University of Notre Dame]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
AUG 23, 2020
Microbiology
How Microbes Can Help Clean a Toxic River
AUG 23, 2020
How Microbes Can Help Clean a Toxic River
Some places in the United States have become dangerously polluted with hazardous waste. The EPA oversees a program that ...
AUG 29, 2020
Cell & Molecular Biology
Together, Two Gut Microbes Have a Nasty Effect
AUG 29, 2020
Together, Two Gut Microbes Have a Nasty Effect
The microbes in the human gut play important roles in our physiology, and they can also contribute to disease. But they ...
SEP 15, 2020
Microbiology
If They Must, Methane-Eating Microbes Will Consume Ammonia
SEP 15, 2020
If They Must, Methane-Eating Microbes Will Consume Ammonia
There are many different kinds of microbes, and some can use unusual substances to survive. Methanotrophs, for example, ...
SEP 27, 2020
Microbiology
New Insight Into An Old Bacterial Pathogen
SEP 27, 2020
New Insight Into An Old Bacterial Pathogen
There are many different strains of Escherichia coli bacteria, some of which live harmlessly in the human gut. But some ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
NOV 19, 2020
Immunology
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
NOV 19, 2020
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
Parasitic worms known as helminths have a complicated relationship with the immune systems of the hosts they invade. Ter ...
Loading Comments...