NOV 13, 2017 11:35 AM PST

Super Glue-Like Bacteria

WRITTEN BY: Sarah Hertrich

Caulobacter crescentus is an interesting type of aquatic bacteria that can survive in harsh environments such as fresh water, salt water, and soil. Nutrients in these types of environments are often limited. The bacteria was featured this week on the American Society for Microbiology’s Small Things Considered blog for its unique cell morphologies, strong adhesive abilities, and role as a model for ageing studies.

Caulobacters are able to strongly adhere themselves to surfaces in challenging environments such as small creeks where there is running water or small waves. The “super glue” that allows for this attachment is a tiny blob of polysaccharide. Credit: BioTechniques

In the beginning stages of Caulobacter cell differentiation, the mother cell will produce a stalk which helps it attach to a surface. Once attached, the mother cell will begin to replicate its chromosome and release a ‘swarmer’ daughter cell. Daughter cells are flagellated, meaning they contain a tail that allows them to swim. This tail allows the daughter cell to swim to a place which it can attach and replicate once again.

The stalk of the mother cell is made of a polysaccharide that allows for a holdfast grip in harsh environments. Researchers discovered that stalked Caulobacter cells were not easily removed from surfaces in the laboratory. Previous research has shown that when Caulobacter cells are in the stalked stage while attached to glass microscope slides, cells were unable to be removed with water. Scientists found that even strong jets of water could not detach the bacteria from the glass. This property allows the bacteria to adhere to surfaces in creeks and rivers where there is flowing water or small waves. 

This polysaccharide is a crosslinked beta-1,4 N-acetyl glucosamine which is a similar substance that holds bacterial cells together in a biofilm. While the biofilm extrapolysaccharide is described as more of a “slime” the stalk polysaccharide is more of a “glue”. Secretion of the stalk polysaccharide is triggered when the swarming daughter cell detects a surface.

Using Atomic Force Microscopy, scientists found the adhesion strength and holdfast of the Caulobacter stalk to be stronger than the adhesive hairs on the surface of geckos’ toes, known as setae. The polysaccharide that composes the stalk may be an excellent candidate for a biodegradable surgical adhesive. For example, the adhesive strength of this polysaccharide is stronger than the current dentin and enamel adhesives on the market.

Sources: Small Things Considered, MicrobeWiki, BioTechniques

About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
APR 08, 2020
Immunology
APR 08, 2020
How the Skin Shields Against Zika Infection
Aedes mosquitoes are native of Africa but are commonly found in regions of the Americas, Asia, and the Pacific. These da ...
APR 07, 2020
Chemistry & Physics
APR 07, 2020
The anti-bacterial superpowers of silver
Now more than ever we are all thinking about germs. Germs, microbes, bacteria, viruses – it’s a constant min ...
APR 16, 2020
Health & Medicine
APR 16, 2020
Structural Basis of Receptor Recognition by SARS-CoV-2
As mortality and infection rates rise globally, it appears that SARS-CoV-2, the virus responsible for the COVID-19 pande ...
APR 29, 2020
Genetics & Genomics
APR 29, 2020
Toxoplasma Infections Can Cause Epigenetic Changes in Males
Anywhere from 25 to 80% of the world's population is infected with a parasite called Toxoplasma gondii.
MAY 04, 2020
Microbiology
MAY 04, 2020
3D Print a Customizable Microscope for as Little as $18
Researchers have developed an open-source and customizable microscope that can be 3D-printed for only $18.
MAY 25, 2020
Microbiology
MAY 25, 2020
The Symbiotic Bacteria That Stow Away in Ship-Destroying Clams
Shipworms are known as the 'termites of the sea.' They are not actually worms; these infamous mollusks that have brought ...
Loading Comments...