APR 25, 2018 08:49 AM PDT

Cleaning out Gut Bacteria may Improve Heart Failure

WRITTEN BY: Carmen Leitch

We have as many bacterial cells in our bodies as we do human cells, and those bacteria have a powerful impact on our health. Researchers have been exploring the many processes affected by the microbial community in our gastrointestinal tract, the gut microbiome. New findings have indicated that completely wiping the gut clean of bacteria could be beneficial for the heart and may slow damage that happens during heart failure.

This is an infographic describing research on the communication between the gut and the heart. / Credit: Francisco Carrillo-Salinas, PhD

It is thought that the microorganisms living in the gut increase the production of immune agents called T cells and thereby impact heart failure. In mice that model heart failure, antibiotic treatment over five weeks sterilized their guts and improved their outcomes. The findings have been presented at the 2018 meeting of Experimental Biology at the American Society for Investigative Pathology annual meeting.

"Our lab studies how the gut talks to the heart through T cells," said Francisco J. Carrillo-Salinas, Ph.D., a postdoctoral scholar at Tufts University who conducted the research. "Given that the gut is the body's largest reservoir of T cells and microbes, by modulating the microbiota we could modulate T cell activation and changes in the heart that lead to heart failure."

In heart failure, the heart can’t pump enough blood to the body. Almost 6 million people in the US have heart failure, and around half of those who are diagnosed die within five years.

Previous research has identified a link between the gut microbiome and cardiovascular health, as explained in the video. 

Carrillo-Salinas and collaborators have found that T cells penetrate into the heart in people that are experiencing heart failure. 

Antibiotics are known to affect the gut microbiome, so researchers exposed mice modeling heart failure as well as normal mice to antibiotics, while some mice were untreated. The team assessed markers of heart function and immune activity in these mice. 

Mice that both received antibiotics and modeled heart failure were better able to pump blood and had less tissue damage in their hearts compared to mice that did not get antibiotics.

"Because complete sterilization of the gut has proven to ameliorate some experimental models of T cell-mediated diseases, our results were in agreement with our initial hypothesis," explained Carrillo-Salinas. "The fact that we see fully preserved heart function is surprising, and I am looking forward to exciting new data on what happens in the heart once different bacteria recolonize the gut."

This work suggests that in the lymph nodes closest to the heart, T cells are activated, which then migrate to the heart and stop the progression of heart failure as they release cytokines. That enlarges the heart, and scar tissue is formed. In mice that had received antibiotics, none of these changes were observed.

"Understanding how the gut microbiota directly regulates the function of distant organs such as the heart will shed new light into potential new therapeutic approaches in patients recently diagnosed with heart failure to prevent progression," added Carrillo-Salinas. "Our results demonstrate that gut microbiota depletion prevents cardiac dysfunction and sets the stage for future studies that will determine which components of the microbiota are responsible for heart failure progression."


Sources: AAAS/Eurekalert! Via Experimental Biology 2018

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 19, 2019
Microbiology
NOV 19, 2019
Reducing Antibiotic Use Still Critical, but Resistance Spreads Even Without the Drugs
Antibiotic use would have to be reduced by 80% in order to effectively curtail the spread of antibiotic-resistant microbes in the River Thames....
NOV 19, 2019
Immunology
NOV 19, 2019
Flu Shot Less Effective Due to Overuse of Antibioitics
New research out of the Stanford University School of Medicine shows that the consequence of overuse of antibiotics lowers the effectiveness of the seasona...
NOV 19, 2019
Cell & Molecular Biology
NOV 19, 2019
Researchers Discover a Cause of Antibiotic Resistance
For years, people have relied on antibiotics to cure bacterial infections, and many of those antibiotics are now becoming less effective....
NOV 19, 2019
Immunology
NOV 19, 2019
Researchers Identify Pair of "Recruiters" that Pull T Cells to the Lungs
How do CD8 T cells make it to the lungs to help in the fight against infection? Why don’t T cells remain longer in the lungs? How can science optimiz...
NOV 19, 2019
Genetics & Genomics
NOV 19, 2019
A More Precise Version of CRISPR/Cas9 is Created
A more accurate version of Cas9 has been created, reducing the number of off-target effects. It may be better suited for use in gene therapy....
NOV 19, 2019
Microbiology
NOV 19, 2019
A Bacterial Pathogen Can Steal Huge Chunks of DNA From Other Microbes
Microorganisms are everywhere, and they are often engaged in a fight for resources with other microbes....
Loading Comments...