APR 11, 2014 12:00 AM PDT

Mass Extinction May Have Been Caused by Microbes and Methane

WRITTEN BY: Jen Ellis
It is well known that some event took place over 250 million years in the past that caused a mass extinction on Earth, taking out 90% of all the species. However, nobody knows for sure what caused this event, known as the Great Dying.

The previous leading candidate was extreme volcanic activity releasing massive amounts of carbon dioxide into the atmosphere. However, a new study by researchers at MIT suggests that volcanic activity was not the entire cause, but was likely an enabler in the Great Dying. The group's research was published in a recent edition of the Proceedings of the National Academy of Sciences.

While the volcano hypothesis makes sense on some level, elements of it did not add up-primarily with the amount of carbon released.

Geochemical analysis showed an unusually high level of carbon in sediments that correlate to the time of the Great Dying, indicating a large increase in carbon compounds in gaseous form. This had been potentially attributed to a series of erupting volcanoes that formed the volcanic stone formation known as the Siberian traps.

While these eruptions make up the largest known volcanic emissions in the history of the Earth, the team at MIT determined that the eruptions by themselves did not account for all of the carbon in the sediments.

As an added refutation, the carbon deposits showed variations over time that did not fit with volcanic eruption. Volcanic activity should produce a large initial increase with a gradual decline over time as the carbon dissipated, but the deposits indicated a continued increase beyond the eruption period.

What could survive and add still more carbon to the atmosphere under this environment? The answer is microbes. In particular, the team focused on Methanosarcina, an archaea that is a prolific producer of methane. The volcanic eruptions caused a significant release of nickel into the atmosphere, according to a new analysis of sedimentary material found in China, and nickel is a necessary ingredient for the growth of Methanosarcina.

While compiling a map of the genetic history of Methanosarcina, it was noted that in the approximate time of the mass extinction, the microbe managed to obtain a method of rapid methane production from another microbe.

Combined with an initial feedstock of atmospheric carbon and nickel, this created the perfect set of circumstances for explosive growth of Methanosarcina. Once the carbon dioxide and nickel-laden byproducts of the volcanic eruptions entered the oceanic environment of Methanosarcina, rapid expansion followed. The resulting massive increase in methane accounts for the larger volume of carbon, and matches up better with the growth rates in the sediments. The Great Dying subsequently took place, as many species could not adapt to the new, harsh environment.

It's fair to say that we still don't know for sure what caused the Great Dying-although thanks to the research team at MIT, we now have a more plausible theory than before. As with any theory, it's always subject to change based on newer findings.
About the Author
You May Also Like
NOV 17, 2019
Microbiology
NOV 17, 2019
How a Virus Can Help Treat Alcoholic Liver Disease
Viruses don't only infect humans, some, called bacteriophages or phages, infect bacteria. Image credit: Wikimedia Commons/AFADadcADSasd...
NOV 24, 2019
Cell & Molecular Biology
NOV 24, 2019
A Critical Step in Ribosome Assembly is Viewed For the First Time
Proteins are critical to biology, and are generated by vital, ancient cellular structures called ribosomes....
DEC 01, 2019
Genetics & Genomics
DEC 01, 2019
Engineering a Better Viral Delivery System for Gene Therapy
To send gene therapy to diseased cells, scientists have turned to adeno-associated viruses (AAVs) to act as a delivery system....
DEC 09, 2019
Microbiology
DEC 09, 2019
A Single-Celled Organism That Seems to Make Choices
A protist has been captured on video 'changing its mind.'...
DEC 15, 2019
Microbiology
DEC 15, 2019
Potential Therapeutics for Nipah Virus Are Identified
The fatality rate of Nipah virus has an estimated range of 40 to 75 percent...
DEC 29, 2019
Microbiology
DEC 29, 2019
Coral Reef-Building Organisms Capture First Place in Small World Competition
The winner of the Nikon Small World in Motion contest has captured a tiny animal called coral polyp as light levels go down and it emerges....
Loading Comments...