APR 26, 2015 09:55 AM PDT

Researchers Record from Brain to Locate Tinnitus

WRITTEN BY: Will Hector
About one in five people experience tinnitus, the perception of a sound--often described as ringing--that isn't really there. Now, researchers reporting in the Cell Press journal Current Biology on April 23 have taken advantage of a rare opportunity to record directly from the brain of a person with tinnitus in order to find the brain networks responsible.

The observations reveal just how different tinnitus is from normal representations of sounds in the brain.
3-D image of the left hemisphere of a patient with tinnitus (right). Black dots indicate all the sites recorded from. Colored circles indicate electrodes at which the strength of ongoing brain activity correlated with the current strength of tinnitus perceived by the patient. Different colors indicate different frequencies of brain activity (blue = low, magenta = middle, orange = high).
"Perhaps the most remarkable finding was that activity directly linked to tinnitus was very extensive, and spanned a large proportion of the part of the brain we measured from," says Will Sedley of Newcastle University. "In contrast, the brain responses to a sound we played that mimicked [the subject's] tinnitus were localized to just a tiny area."

In the new study, Sedley and The University of Iowa's Phillip Gander contrasted brain activity during periods when tinnitus was relatively stronger and weaker. The study was only possible because the 50-year-old man they studied required invasive electrode monitoring for epilepsy. He also happened to have a typical pattern of tinnitus, including ringing in both ears, in association with hearing loss.

"It is such a rarity that a person requiring invasive electrode monitoring for epilepsy also has tinnitus that we aim to study every such person if they are willing," Gander says.

The researchers found the expected tinnitus-linked brain activity, but they report that the unusual activity extended far beyond circumscribed auditory cortical regions to encompass almost all of the auditory cortex, along with other parts of the brain.

The discovery adds to the understanding of tinnitus and helps to explain why treatment has proven to be such a challenge, the researchers say.

"We now know that tinnitus is represented very differently in the brain to normal sounds, even ones that sound the same, and therefore these cannot necessarily be used as the basis for understanding tinnitus or targeting treatment," Sedley says.

"The sheer amount of the brain across which the tinnitus network is present suggests that tinnitus may not simply 'fill in' the 'gap' left by hearing damage, but also actively infiltrates beyond this into wider brain systems," Gander adds.

These new insights may help to inform treatments such as neurofeedback, where patients learn to control their "brainwaves," or electromagnetic brain stimulation, according to the researchers. A better understanding of the brain patterns associated with tinnitus may also help point toward new pharmacological approaches to treatment, "which have so far generally been disappointing."

(Sources: Cell Biology; Science Daily)
About the Author
  • Will Hector practices psychotherapy at Heart in Balance Counseling Center in Oakland, California. He has substantial training in Attachment Theory, Hakomi Body-Centered Psychotherapy, Psycho-Physical Therapy, and Formative Psychology. To learn more about his practice, click here: http://www.heartinbalancetherapy.com/will-hector.html
You May Also Like
SEP 03, 2018
Genetics & Genomics
SEP 03, 2018
Two Genes Found to be Essential to REM Sleep
In mice lacking genes important to acetylcholine signaling, REM sleep was nearly lost....
SEP 20, 2018
Neuroscience
SEP 20, 2018
Macaques Explain The Neuroscience of Envy
Believe it or not, there are neurological underpinnings that determine how we perceive our environment and often our perception of others. A publication in...
OCT 01, 2018
Videos
OCT 01, 2018
Is Bigger Better?
Bigger is better, right? If you’re trying to insult someone you might call them a “pea brain” or tell them they have a “bird brain,...
OCT 23, 2018
Cannabis Sciences
OCT 23, 2018
Does Marijuana Help or Hinder Stroke Recovery?
A recent study reported in the Journal of Stroke and Cerebrovascular Diseases has found that marijuana smokers have a higher rate of hospital adm...
OCT 24, 2018
Neuroscience
OCT 24, 2018
Self-Restraint And Will Power Improves Weight-Loss: Scientific Evidence
Weight loss success linked with active self-control regions of the brain...
NOV 01, 2018
Cell & Molecular Biology
NOV 01, 2018
Researchers Link Parkinson's Disease and the Appendix
When a person's appendix is removed early in life, it reduces their chances of getting Parkinson's disease....
Loading Comments...