JUL 03, 2018 05:25 AM PDT

Controlling a Robotic Arm With Brain Activity

When computer scientists and robotic engineers get together to create something, there is code, hardware and lots of other work to achieve what the project was meant to do.

Robots do not know instinctively how to perform some tasks, so they are either programmed, with thousands of lines of code that covers very specific actions, or there is artificial intelligence (AI) and algorithms involved that allow the robot to “think” at least in a very limited scope. It’s not an easy process to get a robot to do anything, even the simplest tasks take a lot of work. 

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) know a thing or two about robotics and while the work is complex, their goal is to make it a bit simpler. They are working on a system where a user is connected to a robot and can correct any mistakes the robot makes during a task with a simple hand gesture or a brainwave pattern. The team has already had some success in this endeavor, getting robots to execute a “binary choice” task, where there are only two options. The more recent work attempts to up the ante to a multiple choice task. 

They’ve chosen a robotic arm that must move a power drill to a certain spot on a wooden plank they’ve set up in the lab. There are three possible targets on the board and the robot must figure out which to drill. A user is connected to the robotic arm and has electrodes reading brain activity and other sensors monitoring muscles in the forearm and hand. The user knows which spot the drill is supposed to hit. If it’s not getting the target, brain activity from the user indicates that there’s an error and corrects the arm’s movement with a combination of muscle movements in the hand that is read by the interface and brainwaves. 

CSAIL Director Daniela Rus, who oversaw the work at MIT explained, “This work combining EEG and EMG feedback enables natural human-robot interactions for a broader set of applications than we've been able to do before using only EEG feedback. By including muscle feedback, we can use gestures to command the robot spatially, with much more nuance and specificity.”

The trick was to use brain waves called “error-related potentials” (ErrPs) which are signals in brain wave activity that show a user has detected an error. Rather than the software responding to a user thinking about a specific activity, the response to an ErrP is automatic. MIT Ph.D. candidate Joseph DelPreto is the lead author of the paper and explained, “What’s great about this approach is that there’s no need to train users to think in a prescribed way. The machine adapts to you, and not the other way around.”

It seems to work well too. Using a robot they named “Baxter” which was engineered by the company Rethink Robots, the team demonstrated an improvement in the robot hitting the right target. The score went from 70% without human supervision and rose to 97% accuracy with users connected to the interface. The goal moving forward is to make machines that can adapt to the user’s natural gestures and thoughts. The paper was presented at Robotics: Science and Systems in Pittsburgh. Check out the video to see the team and Baxter in action. 

Sources: MIT  Robotics: Science and Systems

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
SEP 05, 2018
Health & Medicine
SEP 05, 2018
Can AI Algorithms Accurately Assess Mental Illness?
Mental illness is complicated because while the causes are rooted in brain chemistry, neurological injury or other mechanisms in the brain, what is most af...
SEP 10, 2018
Videos
SEP 10, 2018
Is The Human Brain Programmable?
The brain is often referred to as a computer. Researchers have tried for years to make artificial intelligence as fast and efficient as the human brain, bu...
SEP 24, 2018
Drug Discovery
SEP 24, 2018
Further Challenges in Alzheimer Drug Development
Scientists at Trinity College Dublin performed a large-scale international study involving the treatment of Alzheimer's disease, which was published in...
SEP 25, 2018
Neuroscience
SEP 25, 2018
A Brain-Body Imaging System for Neurological Diagnostics
When neuroscientists and doctors have to diagnose complex brain illnesses or injuries, they must collect a great deal of information. From MRI scans to phy...
OCT 04, 2018
Health & Medicine
OCT 04, 2018
Lead Paint Contamination in Military Housing Prompts Investigation
Lead paint is a serious health hazard. The sale of lead paint was banned in the United States in 1978, so homes built before the ban are likely to have at ...
OCT 16, 2018
Genetics & Genomics
OCT 16, 2018
Lab-grown Neurons Help Uncover the Genetic Changes Underlying Mental Illness
Developing therapeutics that will effectively relieve mental illness means understanding what is causing those disorders in the first place....
Loading Comments...