NOV 01, 2018 1:39 PM PDT

How baroreceptors do blood pressure sensing

Winter’s up ahead, and low temperatures cause blood vessels to constrict and increase blood pressure (BP). The question is how these mechanical changes in blood vessels are translated to the brain? The BP information needs to be processed instantaneously to maintain homeostasis. It has been long known that baroreceptors, stretch-sensitive neurons in the nodose and petrosal ganglia initiate the BP regulation. However, there is an ambiguity about the specific ion channels that contribute to baroreceptor function. Do ion channels respond directly or indirectly to the mechanical changes was not clear.

Recently, ubiquitous membrane ion channels that sense mechanical stimuli in mammalians, namely PIEZO1 and PIEZO2 have been identified. The functional outreach of these channels is substantial. Neural stem cell differentiation, vasculature development during embryogenesis, sense of touch, and heart failure are just a few of the examples, where they play a critical role. While Piezo1 expression was reported in nonneuronal tissues in the cardiovascular system and Piezo2 expression was confirmed in a variety of sensory neurons.

Work published in nature communications by Rode et al., in 2017, showed that Piezo1 plays a crucial role in physical activity induced blood pressure changes. Transduction of mechanically activated cationic currents by the peizo1 ion channel in the endothelial cell membranes has been reported. See the video for the proposed mechanical activation model of a Piezo1 ion channel, based on Ge et al. 2015 (3D Molecular mechanics).

Wei-Zheng Zeng and colleagues have recently published in Science confirming that Piezo1 and Piezo2 are the ion channels responsible for baroreceptor reflex mechanotransduction. The authors studied the expression of these ion channels in the mice sensory neurons of nodose and petrosal ganglion, centers that relay the blood pressure changes to higher cortical structures. By retrograde labeling, the carotid sensory neurons and tracing them to the ganglia, a similar number of cells expressed piezo1 and piezo2 with a small fraction expression were confirmed. The image below shows the anatomy of arterial baroreceptors.

A dose-dependent vasoconstrictor drug-induced changes in BP was used to confirm the ion channels role in baroreceptor reflex from knock out mice models. Vasoconstriction induced a reduction in heart rate, and baroreflex sensitivity was not seen in the double channel knockout mice with a significant increase in the systolic BP when compared to wild-type animal response. Additionally, the aortic depressor nerve activity measured in the double knockout mice also showed no changes when compared to wild-type mice. Monitoring the knockout animal's overtime also showed that daily physical activity significant increase in mean arterial pressure and minimal increase in heart rate. Combined with the blood pressure variability seen overtime in the knockout mice, these observations mimics the symptoms of hypertension.

Zeng et al. also studied the Piezo2 channel roles in activating baroreflex via optogenetic mice models. Light activation of both aortic baroreceptors in the superior laryngeal nerve branch and carotid baroreceptors in the carotid sinus region showed an immediate decrease in both blood pressure and heart rate confirmed the expected efferent sympathetic inhibition following baroreceptor activation. Further blocking this activation by β-adrenergic receptor blocker indicated that inhibition of cardiac sympathetic nerve activity mediates bradycardia reflex activity.

Knowing the key players in the blood pressure neuro-signal communication will allow for research into alternative treatment strategies for cardiovascular ailments. While development of piezo channel agonists may not be an ideal direction of drug development given the broad functional role of these mechanical ion channels, exploring the piezo channel alleles in the context of cardiovascular diseases and targeting them might provide the information.

Sources: ScienceMechanobiology Institute, Singapore

About the Author
  • Aswini Kanneganti is an experienced research scientist from Dallas, Texas. Her interests include neuroscience, medical devices, and neuromodulation.
You May Also Like
JUL 02, 2020
Drug Discovery & Development
Common Asthma Drug Could Treat Alzheimer's
JUL 02, 2020
Common Asthma Drug Could Treat Alzheimer's
Researchers from Lancaster University, England, have found that Salbutamol, a medication commonly used to treat asthma, ...
JUL 19, 2020
Neuroscience
Eating Fish May Protect Brain from Air Pollution
JUL 19, 2020
Eating Fish May Protect Brain from Air Pollution
Researchers have found that a diet high in omega-3 fatty acids may prevent neurodegeneration among older women living in ...
JUL 26, 2020
Neuroscience
How COVID-19 Causes Loss of Smell
JUL 26, 2020
How COVID-19 Causes Loss of Smell
Temporary loss of smell, known as anosmia, is one of the most common early indicators of COVID-19. Although some say it ...
JUL 29, 2020
Cannabis Sciences
CBD Tablets Help People Quit Cannabis
JUL 29, 2020
CBD Tablets Help People Quit Cannabis
Cannabis use disorder is essentially cannabis addiction. Although research suggests that it affects 9% of peop ...
AUG 22, 2020
Cannabis Sciences
People with Depression Twice as Likely to Use Cannabis
AUG 22, 2020
People with Depression Twice as Likely to Use Cannabis
Researchers from Columbia University have found that people with depression are around twice as likely to use cannabis t ...
SEP 21, 2020
Neuroscience
Insufficient Sleep Makes It Harder to Enjoy Life, Study Says
SEP 21, 2020
Insufficient Sleep Makes It Harder to Enjoy Life, Study Says
A growing body of research stresses the importance of getting a good night's sleep- whether it's to bolster your ...
Loading Comments...