JUL 07, 2015 5:11 PM PDT

Figuring Out Function

WRITTEN BY: Ilene Schneider
What is it about our brain wiring that makes it easy to pick up a pen or remember the lyrics of a song, each at the appropriate moment? How do we figure out to do when such simple functions elude us?
Brain structure is ideal for functionality, according to researchers.
The human brain evolved the way it did to "expedite the transfer of information from one brain region to another, enabling us to operate at peak capacity," according to a new study by Northeastern physicist Dmitri Krioukov and his colleagues. Published in Nature Communications and reported in Medical News Today, the study explains that the human brain has an almost ideal network of connections, enabling information to travel from the auditory cortex to the motor cortex and so on (http://www.medicalnewstoday.com/releases/296455.php).

According to Krioukov, an associate professor in the Department of Physics, "An optimal network in the brain would have the smallest number of connections possible, to minimize cost, and at the same time it would have maximum navigability--that is, the most direct pathways for routing signals from any possible source to any possible destination. It's a balance, and we have a new strategy to find the connections that achieve the sweet spot."

Krioukov and his co-authors used statistical analyses based on Nobel laureate John Nash's contributions to game theory to construct a map of an idealized brain network that optimized the transfer of information, compared the idealized map of the brain to a map of the brain's real network and asked the question "How close are the two?" They found that 89 percent of the connections in the idealized brain network showed up in the real brain network, meaning that "The brain was evolutionarily designed to be very, very close to what our algorithm shows," says Krioukov.

In an idealized model of a brain network, the typical links would be those required for normal brain function, according to Krioukov, who adds, "So we suspect that they are the primary candidates to look at if some disease develops--to see if they are dam-aged or broken." He believes that once such links are identified, "New drugs or surgical techniques might be developed to target them and repair, or circumvent, the damage. At the end of the day, what we are trying to do is to fix the diseased network so that it can resume its normal function," Krioukov concludes.

Two years ago, scientists at University College London found that brain organization, not overall size, offered the key evolutionary difference between primate brains and to what gives humans their intelligence. Those researchers investigated 17 species that span 40 million years of evolutionary time, finding changes in the relative size of specific brain regions, rather than changes in brain size, accounted for three-quarters of brain evolution over that time. The study was published in the Proceedings of the Royal Society B and reported in Live Science (http://www.livescience.com/28209-brain-organization-key-to-intelligence.html).
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
NOV 06, 2019
Cell & Molecular Biology
NOV 06, 2019
Brains are More Symmetrical in People With Autism
The two halves of the brain and typically assymterical, but that may be less true for individuals with autism spectrum disorder....
NOV 19, 2019
Neuroscience
NOV 19, 2019
Hiccups Key For Infant Brain Development
Although we know how we hiccup, why has remained a mystery for some time, with researchers suggesting it to be an evolutionary hangover from when our ances...
DEC 02, 2019
Drug Discovery & Development
DEC 02, 2019
New Ultrasound Treatment for Parkinson's Tremors
A non-invasive ultrasound procedure may provide lasting relief from tremors in people with Parkinson’s disease (PD) and essential tremor (ET), accord...
JAN 03, 2020
Drug Discovery & Development
JAN 03, 2020
Researchers Grow Psilocybin from E. Coli Bacteria
Previously considered to be narcotic, and under tight regulation as an illicit drug for decades, research from recent years on the possible medicinal prope...
JAN 14, 2020
Drug Discovery & Development
JAN 14, 2020
Promising Treatment for Dementia: Antibiotics
A class of antibiotics, known as the ‘aminoglycosides’ may serve as a promising treatment for frontotemporal dementia—according to resear...
JAN 17, 2020
Neuroscience
JAN 17, 2020
Fewer Connections Between Brain Cells for Schizophrenia
Approximately 1% of the world’s population have schizophrenia, with 3.2 million Americans having the disorder. Now, for the first time, advanced brai...
Loading Comments...