FEB 11, 2019 5:17 PM PST

Spinal Cord Can Do More Than We Thought

WRITTEN BY: Amy Loriaux

Apparently, the spinal cord is underrated. It pops up when neuroscience students learn about basic reflexes, such as removing your hand from a hot surface, but then it is relegated to the part of the central nervous system (CNS) that merely ferries information to and from the brain and the periphery. However, recently, scientists took another look at the spinal cord. They found that it can control more complex motor movements that were once thought to be coming from the cerebral cortex. Is this the spinal cord's time to shine?

Photo source: Pixabay.com

The study, to be published online by Nature Neuroscience, details how Drs. Jeffrey Weiler, Paul L. Gribble, and J. Andrew Pruszynski, from Western University in Canada, used specialized robotic technology to test if the spinal cord participates in hand control in space. An exoskeleton "glove" was put on subjects' hands. Subjects were required to extend and hold their hand in space. While doing so, the exoskeleton moved and displaced the hand in space. The researchers measured the time that it took for the muscles in the elbow and wrist to respond to the displacement and whether these responses helped bring the hand back to the initial target.

According to Dr. Pruszynski, “This research has shown that a least one important function is being done at the level of the spinal cord. It opens up a whole new area of investigation to say, ‘What else is done at the spinal level and what else have we potentially missed in this domain?’”. Restoring the hand to its original position in space involves the orchestrated coordination of sensory inputs from multiple joints in the elbow and the wrist. This coordination was originally thought to take place in the motor cortex.

Processing time for neurons depends on a variety of factors, but distance and the number of processing areas involved will determine how fast a neural signal is propagated. The researchers, recording impulses from the muscles in the hand, found that the speed of the signals in the muscles which detected the exoskeleton's movement was much too fast to be coming from anywhere but the spinal cord.  

Scientists have known since the early 1900s about the reflexes in the spinal cord. There is a "stretch reflex", which is thought to involve a muscle-cord-antagonist circuit that is responsible for the relaxation of the antagonistic muscle. Yet the researchers suggest that this "reflex" is more complicated than that, and their data supports that claim. “We are showing [the spinal cord] can actually do something much more complicated – control the hand in space”, comments Dr. Weiler. 

An example of current physical therapy techniques. Photo source: Pixabay.com

This certainly adds to our current knowledge about the CNS, particularly the relationship between the cord and the peripheral muscles. Furthermore, it can translate to potentially new avenues of rehabilitation techniques. As Dr. Pruszynski says, "A[n]... understanding of the neurocircuits is critical for making any kind of progress on rehabilitation front.” He then added, "...we can see how this knowledge could lead to different kinds of training regimens that focus on the spinal circuitry.” The research paper will be titled "Spinal stretch reflexes support efficient hand control" and will appear online on Nature Neuroscience's website.

See the video below for more information about the study.

Video source: www.uwo.ca

SourcesNature Neurosciencewww.uwo.ca, wikipedia.org/wiki/Stretch_reflex

About the Author
  • I currently work at a small CRO involved in clinical trial management.
You May Also Like
NOV 08, 2020
Neuroscience
Psychedelic DMT Improves Memory by Neurogenesis
NOV 08, 2020
Psychedelic DMT Improves Memory by Neurogenesis
Researchers from the Complutense University of Madrid in Spain have found that dimethyltryptamine (DMT), the psychoactiv ...
NOV 18, 2020
Clinical & Molecular DX
Nerve Damage as a Prognostic Marker for Rare Autoimmune Disease
NOV 18, 2020
Nerve Damage as a Prognostic Marker for Rare Autoimmune Disease
Researchers have identified a new prognostic biomarker for Guillain-Barré syndrome (GBS), a rare autoimmune disor ...
DEC 15, 2020
Genetics & Genomics
Can a Brain Look Lonely?
DEC 15, 2020
Can a Brain Look Lonely?
Many isolated individuals have been isolated this year, and the holidays may only exacerbate feelings of loneliness.
JAN 03, 2021
Cell & Molecular Biology
Gaining Insight Into the Neuronal Circuitry of the Developing Brain
JAN 03, 2021
Gaining Insight Into the Neuronal Circuitry of the Developing Brain
The neuronal connections in the human brain are more complex than anything we can build artificially right now. But rese ...
JAN 13, 2021
Drug Discovery & Development
Could Rotten Egg Gas Reverse Alzheimer's?
JAN 13, 2021
Could Rotten Egg Gas Reverse Alzheimer's?
Researchers from Johns Hopkins University have found that hydrogen sulfide, a gas that smells like rotten eggs, may prot ...
JAN 26, 2021
Immunology
Can we Stop Multiple Sclerosis Progression?!
JAN 26, 2021
Can we Stop Multiple Sclerosis Progression?!
Multiple sclerosis is known for its progression of symptoms even after a period of complete remission. There is no way o ...
Loading Comments...