AUG 16, 2015 9:35 PM PDT

Sleep, Wake, Repeat

WRITTEN BY: Ilene Schneider
When Dr. Ravi Allada, a circadian rhythms expert, was looking at a mutant fruit fly fifteen years ago, he began his quest to discover how an animal's biological clock wakes it up in the morning and puts it to sleep at night. The clock's mechanism is like a light switch. Recently Allada and his research team did a study of brain circadian neurons that govern the daily sleep-wake cycle's timing and discovered that high sodium channel activity in these neurons during the day turns the cells on and ultimately awakens an animal High potassium channel activity at night turns them off, enabling the animal to sleep. The same sleep-wake switch appears in both flies and mice, according to an article in Science Daily
Circadian rhythm expert and his team discover trigger for sleep-wake cycle. 
According to Allada, professor and chair of neurobiology in the Weinberg College of Arts and Sciences at Northwestern University, "This suggests the underlying mechanism controlling our sleep-wake cycle is ancient. This oscillation mechanism appears to be conserved across several hundred million years of evolution. And if it's in the mouse, it is likely in humans, too."

According to Sleep.org, one’s circadian rhythm (also known as the sleep/wake cycle or body clock) is a natural, internal system designed to regulate feelings of sleepiness and wakefulness over a 24-hour period. This complex timekeeper is controlled by an area of the brain that responds to light, which is why humans are most alert while the sun is shining and are ready to sleep when it’s dark outside.

Allada believes that better understanding of this mechanism could lead to new drug targets to address sleep-wake trouble related to jet lag, shift work and other clock-induced problems. Eventually, he and his colleagues think it might be possible to reset a person's internal clock to suit his or her situation. The researchers describe the cycle as a "bicycle" mechanism: two pedals that go up and down across a 24-hour day, conveying important time information to the neurons. They found the two pedals, a sodium current and potassium currents, active in both the simple fruit fly and the more complex mouse. The findings were published in the August 13 issue of the journal Cell. 

According to Matthieu Flourakis, the lead author of the study, "What is amazing is finding the same mechanism for sleep-wake cycle control in an insect and a mammal. Mice are nocturnal, and flies are diurnal, or active during the day, but their sleep-wake cycles are controlled in the same way."

The researchers discovered that when sodium current is high, the neurons fire more, awakening the animal, and when potassium current is high, the neurons quiet down, causing the animal to slumber. The balance between sodium and potassium currents controls the animal's circadian rhythms.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
AUG 29, 2020
Drug Discovery & Development
MDMA and LSD Combo to Enter Clinical Trials
AUG 29, 2020
MDMA and LSD Combo to Enter Clinical Trials
Scientists from the pharmaceutical company, MindMed, have announced the beginning of Phase 1 clinical trials to test Sch ...
OCT 03, 2020
Clinical & Molecular DX
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
OCT 03, 2020
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
Researchers at Harvard have discovered a novel diagnostic marker of dementia for identifying undiagnosed patients or tho ...
OCT 27, 2020
Clinical & Molecular DX
A Super Sensitive Alzheimer's Test Powered by Nanozymes
OCT 27, 2020
A Super Sensitive Alzheimer's Test Powered by Nanozymes
  Simple tasks are now uphill struggles, social situations aren’t fun, and the car keys are missing again. By ...
NOV 01, 2020
Cannabis Sciences
Can Cannabis Treat ALS?
NOV 01, 2020
Can Cannabis Treat ALS?
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative illness that damages motor neurons and leads to progressive m ...
NOV 07, 2020
Neuroscience
Device Measures Stress Hormones with Earwax
NOV 07, 2020
Device Measures Stress Hormones with Earwax
Researchers from University College London and King’s College London in the UK have developed a device that can me ...
NOV 14, 2020
Cell & Molecular Biology
Towards a Better Characterization of Neurons
NOV 14, 2020
Towards a Better Characterization of Neurons
The human body is made up of a wide array of different types of cells, and if we want to understand human diseases and t ...
Loading Comments...