AUG 16, 2015 9:35 PM PDT

Sleep, Wake, Repeat

WRITTEN BY: Ilene Schneider
When Dr. Ravi Allada, a circadian rhythms expert, was looking at a mutant fruit fly fifteen years ago, he began his quest to discover how an animal's biological clock wakes it up in the morning and puts it to sleep at night. The clock's mechanism is like a light switch. Recently Allada and his research team did a study of brain circadian neurons that govern the daily sleep-wake cycle's timing and discovered that high sodium channel activity in these neurons during the day turns the cells on and ultimately awakens an animal High potassium channel activity at night turns them off, enabling the animal to sleep. The same sleep-wake switch appears in both flies and mice, according to an article in Science Daily
Circadian rhythm expert and his team discover trigger for sleep-wake cycle. 
According to Allada, professor and chair of neurobiology in the Weinberg College of Arts and Sciences at Northwestern University, "This suggests the underlying mechanism controlling our sleep-wake cycle is ancient. This oscillation mechanism appears to be conserved across several hundred million years of evolution. And if it's in the mouse, it is likely in humans, too."

According to Sleep.org, one’s circadian rhythm (also known as the sleep/wake cycle or body clock) is a natural, internal system designed to regulate feelings of sleepiness and wakefulness over a 24-hour period. This complex timekeeper is controlled by an area of the brain that responds to light, which is why humans are most alert while the sun is shining and are ready to sleep when it’s dark outside.

Allada believes that better understanding of this mechanism could lead to new drug targets to address sleep-wake trouble related to jet lag, shift work and other clock-induced problems. Eventually, he and his colleagues think it might be possible to reset a person's internal clock to suit his or her situation. The researchers describe the cycle as a "bicycle" mechanism: two pedals that go up and down across a 24-hour day, conveying important time information to the neurons. They found the two pedals, a sodium current and potassium currents, active in both the simple fruit fly and the more complex mouse. The findings were published in the August 13 issue of the journal Cell. 

According to Matthieu Flourakis, the lead author of the study, "What is amazing is finding the same mechanism for sleep-wake cycle control in an insect and a mammal. Mice are nocturnal, and flies are diurnal, or active during the day, but their sleep-wake cycles are controlled in the same way."

The researchers discovered that when sodium current is high, the neurons fire more, awakening the animal, and when potassium current is high, the neurons quiet down, causing the animal to slumber. The balance between sodium and potassium currents controls the animal's circadian rhythms.
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
NOV 25, 2019
Drug Discovery & Development
NOV 25, 2019
Discovery of mechanism behind Alexander disease may lead to enhanced drug development
Researchers have long known that the cause behind Alexander disease is a genetic culprit—mainly a mutation leading to the production of a defective p...
DEC 20, 2019
Neuroscience
DEC 20, 2019
Hand-Motion Center of the Brain Involved in Speech
During a long-term study focused on improving computer-assistant interfaces for quadriplegia patients, researchers at Stanford University were able to use...
JAN 07, 2020
Cell & Molecular Biology
JAN 07, 2020
Cancer-Like Metabolism Can Fuel Brain Growth
During evolution, the size of the human brain increased significantly compared to other primates....
JAN 17, 2020
Neuroscience
JAN 17, 2020
Fewer Connections Between Brain Cells for Schizophrenia
Approximately 1% of the world’s population have schizophrenia, with 3.2 million Americans having the disorder. Now, for the first time, advanced brai...
JAN 17, 2020
Genetics & Genomics
JAN 17, 2020
Soybean Oil Found to Change Gene Expression in the Brain
Soybean oil is used for frying and for making foods like margarine and salad dressing. It's the most commonly produced and consumed edible oil in the US....
FEB 12, 2020
Neuroscience
FEB 12, 2020
How AI and Neuroscience Propel Each Other Forward
Traditional notions of artificial intelligence (AI) are outdated. Rather than simply being able to understand inventory lists, or make binary decisions bas...
Loading Comments...