SEP 07, 2019 11:50 AM PDT

New MRI scan can reveal molecular changes in the brain

MRI scans give us pictures of the brain that depict the physical structure of brain tissue. Now, researchers discovered a way to determine the biological makeup of the brain using an MRI – a powerful method that can help scientists understand the molecular basis of normal aging and neurodegenerative disease.

In a paper published in Nature Communications, Dr. Aviv Mezer and his research team at the Hebrew University of Jerusalem (HUJI)’s Edmond and Lily Safra Center for Brain Sciences used a new quantitative imaging approach to extract molecular information about brain tissue from an MRI signal.

"Instead of images, our quantitative MRI model provides molecular information about the brain tissue we're studying. This could allow doctors to compare brain scans taken over time from the same patient, and to differentiate between healthy and diseased brain tissue, without resorting to invasive or dangerous procedures, such as brain tissue biopsies," explained Mezer.

Apart from the obvious indicators of aging - going grey, wrinkles, memory and cognitive problems – how do we know if someone’s brain is aging normally, or developing a disease? Biology may be key. Normal aging and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, create biological “signatures” in the brain, such as differences in the lipid or protein content of brain tissue.

The biological basis of aging is very complex – current theories of aging suggest that aging is not uniform. Rather, each molecule, cell, or system in the body deteriorates with age for different reasons. This pattern is called ‘mosaic aging’, and data gathered from Mezer’s new MRI method debunks prior theories about the aging process. These theories posit that a set of core biological factors, including chromosome attrition and hormonal dysregulation, are responsible for decreased cognitive abilities as we age.

So, not only will this method speed up diagnostics of neurodegenerative disease, studying the molecular landscape of the brain will greatly advance our knowledge of how specific molecules, cells, and brain regions may differently contribute to aging.

Source: EurekAlert!, MedicalExpress

About the Author
You May Also Like
MAR 01, 2021
Cardiology
How Heart Problems May Lead to Memory Deficits
MAR 01, 2021
How Heart Problems May Lead to Memory Deficits
Researchers have used a mouse model to show that heart problems can lead to disruptions in gene activity in the memory c ...
MAR 08, 2021
Genetics & Genomics
A Slowdown in Cells' Protein Construction Drives Huntington's
MAR 08, 2021
A Slowdown in Cells' Protein Construction Drives Huntington's
Huntington's disease begins with symptoms like movement and balance problems, weakness, and behavioral disturbances, and ...
MAR 18, 2021
Cannabis Sciences
Migraine Sufferers Who Use Cannabis Have More Headaches
MAR 18, 2021
Migraine Sufferers Who Use Cannabis Have More Headaches
Researchers from Stanford University School of Medicine have found that people who use cannabis for pain relief from chr ...
APR 07, 2021
Genetics & Genomics
New Approach Reveals 13 Novel Alzheimer's-Linked Genes
APR 07, 2021
New Approach Reveals 13 Novel Alzheimer's-Linked Genes
Scientists have been using genetic and computational tools to find small changes in the sequences of genes that are like ...
APR 28, 2021
Health & Medicine
Adolescent Cannabis - No Long Term Cognitive Effects, But Still an Impact
APR 28, 2021
Adolescent Cannabis - No Long Term Cognitive Effects, But Still an Impact
An ongoing study that observes the cognitive, mental health and socioeconomic outcomes of twins has come to the conclusi ...
MAY 03, 2021
Drug Discovery & Development
Low Dose Radiation May Improve Symptoms of Alzheimer's
MAY 03, 2021
Low Dose Radiation May Improve Symptoms of Alzheimer's
While high doses of radiation are known to be harmful, low doses may be able to help the body protect and repair. And no ...
Loading Comments...