MAR 03, 2016 4:59 AM PST

Thought Controlled Prosthetic Limbs

As a result of the war in the Middle East, there are 1,558 American soldiers who have suffered the loss of a limb. Add to that the number of patients who lose limbs to disease or accidents and it illustrates the need for better artificial limbs. Technology to replace limbs with more realistic and functional prosthetics is ongoing, but a new approach from Johns Hopkins University Applied Physics Laboratory (APL) is getting noticed for its innovative design
High tech limbs can be controlled by the wearer's thoughts
It starts with the replacement limb. Designed at the APL, the Modular Prosthetic Limb, or MPL, can be attached directly to what is left of the patient’s limb. It’s a more comfortable fit this way and doesn’t involve a socket, the part of the limb that attaches to the body of the patient. Limbs with the socket design are hard to fit exactly. Patients can suffer from blisters and sores, even with the best fitting models.  
 
The next part involves the surgery. It’s called osseointegration and requires a device called Compress® to be implanted in the bone of the patient’s residual limb. The body’s immune response to the device creates a bond and helps the device anchor firmly for the long term. After several weeks, the second part of the surgery is completed.  An adapter brought through the skin gets connected to the Compress implant on the bone side, enabling a direct link to the external prosthesis.
 
The first patient to receive this surgery and use the MPL is Johnny Matheny. Richard McGough, chief of the Division of Musculoskeletal Oncology at the University of Pittsburgh Medical Center, performed the stage one surgery on Matheny in March 2015 and stage two in June 2015. Matheny was also the first patient in the US to undergo TMR surgery where the nerves that once controlled the missing limb are re-directed to control muscles in the upper body that can operate some of the more complex prostheses like the MPL. Matheny lost his arm to cancer in 2008.
 
In an interview Matheny talked about the difference between a traditional prosthetic arm and the MPL. “Before, the only way I could put the prosthetic on was by this harness with suction and straps; but now, with osseointegration, the implant does away with all that. It’s all natural now. Nothing is holding me down. Before, I had limited range; I couldn’t reach over my head and behind my back. Now boom, that limitation is gone.” 
 
The final step is the Bluetooth technology that allows a patient to control the movements of the MPL simply by thinking about it. Wireless sensors that pick up on the nerves that were reassigned in the TMR surgery allow the brain to send messages to the MPL on how to move. It takes a lot of therapy for a patient to learn exactly how to use their mind to make all the different motions of the arm, hand and fingers, but the technology is advancing constantly thanks to volunteers like Matheny who test it and agree to undergo multiple surgeries. Check out the video below to see how the MPL works and what the team at Hopkins plans to do with it in the future.
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 28, 2020
Genetics & Genomics
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
AUG 28, 2020
'Jumping' Genes Can Regulate Gene Expression in Human Neurons
Even though genes that code for protein have been an intense focus of biomedical research for decades, the human genome ...
SEP 19, 2020
Cell & Molecular Biology
Reward and Punishment Take Similar Paths in the Mouse Brain
SEP 19, 2020
Reward and Punishment Take Similar Paths in the Mouse Brain
Scientists have determined that mice have brain cells that can help them learn to avoid bad experiences.
SEP 29, 2020
Cell & Molecular Biology
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
SEP 29, 2020
What We Call Parkinson's Disease May Actually be Two Distinct Disorders
Researchers have used imaging tools to show that Parkinson's disease may actually be two different diseases, one that st ...
OCT 20, 2020
Immunology
The Immune Pause Button Slowing MS Progression
OCT 20, 2020
The Immune Pause Button Slowing MS Progression
  Scientists have a new theory about the genetics behind the progressive, debilitating effects of multiple sclerosi ...
OCT 22, 2020
Cannabis Sciences
Cannabis Reduces OCD Symptoms by 50%
OCT 22, 2020
Cannabis Reduces OCD Symptoms by 50%
Researchers from Washington State University have found that smoking cannabis can lead to a short term reduction in up t ...
NOV 07, 2020
Cannabis Sciences
Does Cannabis Make Bipolar Disorder Better or Worse?
NOV 07, 2020
Does Cannabis Make Bipolar Disorder Better or Worse?
While anecdotal evidence and some case studies suggest cannabis may benefit those with bipolar disorder, studies have re ...
Loading Comments...