MAR 08, 2016 02:08 PM PST

Transcriptional Waves Determine Neuronal Differentiation

WRITTEN BY: Cassidy Reich
There are many, many different kinds of neurons in our brain, and at some point, they all had to differentiate from their progenitor cells. The exact process of this differentiation is unknown. Identifying how neurons differentiate would go a long way in unraveling the mysteries behind neurological disorders like autism and schizophrenia. Knowledge of neuronal differentiation could also be applied to the engineering of neurons from stem cells.

Researchers at the University of Geneva led by Denis Jabaudon have visualized the transcription patterns in differentiating excitatory neurons. Specifically, they were looking at excitatory neurons that originate from progenitor cells in the ventricular zone (VZ) and eventually migrate to the cortex. The researchers used a technique called “FlashTag” to label single cells that are dividing at the VZ with a fluorescent tag. The FlashTag has a very short half-life outside of the cell, so any fluorescence that is not incorporated into the intracellular proteins is short-lived. Once the cells are labeled with the FlashTag pulse, the fluorescent signal is linearly diluted with each new division the cell goes through, allowing individually labeled cells to be identified and tracked during their differentiation.

Mice were labeled with the FlashTag at various embryonic days and then evaluated at postnatal day 7 when neuronal migration is complete. Specifically, the researchers decided to look at neurons labeled at embryonic day 14 which are located in layer 4 of the cortex at postnatal day 7. By isolating neurons at 6, 12, 24, and 48 hours post mitosis and performing single-cell RNA sequencing on the isolated neurons, the researchers were able to construct a map of the transcriptional waves that differentiates these neurons.
 
A visual representation of the different waves of gene expression in different developmental stages.

The first wave consists of repression of proliferation-associated transcripts and an increase in translation machinery. That makes sense because the neurons are done dividing and need to start making more protein. DNA repair machinery was also transiently upregulated which matches the observation that DNA double-strand breaks peaked at 12 hours post-mitosis, revealing a window of vulnerability for new neurons. This observation could have implications for future research on neurological disorders. As early as 12 hours post mitosis, neurons already show an upregulation in transcripts for synaptogenesis. 42 hours after mitosis, neurons start to express chemotaxis-associated transcripts. This is around the time point that these neurons reach the cortical plate and use chemotaxis to direct the axon. The image below depicts the waves of gene expression and where the neuron is in its migration during the different waves of differentiation.
 

Many of the genes they found to be involved in neuronal differentiation are also implicated in various neurodevelopmental and neurodegenerative disorders. Can something happen in the very orchestrated and precisely timed process of differentiation to predispose a neuron to a disorder later in life? That remains to be discovered, but it is only with advancements like this in basic science that we can even begin to answer that question.

Sources: EurekAlert and Science
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
SEP 11, 2018
Neuroscience
SEP 11, 2018
What Learning is Like in the Teen Brain
It's that time of year again. Much like the Christmas song, some parents might think it's "The Most Wonderful Time of the Year" and offic...
OCT 19, 2018
Plants & Animals
OCT 19, 2018
Ant Brains: A Treasure trove of Knowledge
Ants, fascinating social insects, studying their foraging behavior reveals valuable information....
OCT 21, 2018
Cell & Molecular Biology
OCT 21, 2018
The Nervous System Directly Controls Stem Cell Growth
Our body relies on adult stem cells throughout our lives; we need them to continuously generate new cells as they wear out, like on the skin and in our blood....
OCT 29, 2018
Neuroscience
OCT 29, 2018
Zapping the nerves to promote nerve regeneration
Nerve regeneration by electrical stimulation...
NOV 07, 2018
Cell & Molecular Biology
NOV 07, 2018
Lifespan Linked to Number of Cortical Neurons
Scientists linked the number of neurons in an organism's brain with the age of sexual maturity and lifespan of an organism....
NOV 12, 2018
Plants & Animals
NOV 12, 2018
Researchers Link Sunfish Brain Size to Specific Habitats
To most people, a specific fish species would be the same whether it was found at the shoreline or in the middle of the ocean. But according to research pu...
Loading Comments...