MAR 08, 2016 02:08 PM PST

Transcriptional Waves Determine Neuronal Differentiation

WRITTEN BY: Cassidy Reich
There are many, many different kinds of neurons in our brain, and at some point, they all had to differentiate from their progenitor cells. The exact process of this differentiation is unknown. Identifying how neurons differentiate would go a long way in unraveling the mysteries behind neurological disorders like autism and schizophrenia. Knowledge of neuronal differentiation could also be applied to the engineering of neurons from stem cells.

Researchers at the University of Geneva led by Denis Jabaudon have visualized the transcription patterns in differentiating excitatory neurons. Specifically, they were looking at excitatory neurons that originate from progenitor cells in the ventricular zone (VZ) and eventually migrate to the cortex. The researchers used a technique called “FlashTag” to label single cells that are dividing at the VZ with a fluorescent tag. The FlashTag has a very short half-life outside of the cell, so any fluorescence that is not incorporated into the intracellular proteins is short-lived. Once the cells are labeled with the FlashTag pulse, the fluorescent signal is linearly diluted with each new division the cell goes through, allowing individually labeled cells to be identified and tracked during their differentiation.

Mice were labeled with the FlashTag at various embryonic days and then evaluated at postnatal day 7 when neuronal migration is complete. Specifically, the researchers decided to look at neurons labeled at embryonic day 14 which are located in layer 4 of the cortex at postnatal day 7. By isolating neurons at 6, 12, 24, and 48 hours post mitosis and performing single-cell RNA sequencing on the isolated neurons, the researchers were able to construct a map of the transcriptional waves that differentiates these neurons.
 
A visual representation of the different waves of gene expression in different developmental stages.

The first wave consists of repression of proliferation-associated transcripts and an increase in translation machinery. That makes sense because the neurons are done dividing and need to start making more protein. DNA repair machinery was also transiently upregulated which matches the observation that DNA double-strand breaks peaked at 12 hours post-mitosis, revealing a window of vulnerability for new neurons. This observation could have implications for future research on neurological disorders. As early as 12 hours post mitosis, neurons already show an upregulation in transcripts for synaptogenesis. 42 hours after mitosis, neurons start to express chemotaxis-associated transcripts. This is around the time point that these neurons reach the cortical plate and use chemotaxis to direct the axon. The image below depicts the waves of gene expression and where the neuron is in its migration during the different waves of differentiation.
 

Many of the genes they found to be involved in neuronal differentiation are also implicated in various neurodevelopmental and neurodegenerative disorders. Can something happen in the very orchestrated and precisely timed process of differentiation to predispose a neuron to a disorder later in life? That remains to be discovered, but it is only with advancements like this in basic science that we can even begin to answer that question.

Sources: EurekAlert and Science
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
OCT 20, 2019
Genetics & Genomics
OCT 20, 2019
Modified CRISPR Can Manipulate Gene Activity in Neurons
There are challenges to working with nerve cells in the lab, which can create research bottlenecks in the study of neurological disease....
OCT 20, 2019
Neuroscience
OCT 20, 2019
Scientists discover new pain-sensing organ in skin
Schwann cells are octopus-like cells in the nervous system that wrap around nerve cells, jelly-roll fashion, to form a special insulating layer. These cell...
OCT 20, 2019
Neuroscience
OCT 20, 2019
Lab-grown mini brains make humanlike 'brain waves'
When a fetus reaches six months old, it starts to produce electrical signals resembling brain waves. Now, we know that clusters of lab-grown human brain ce...
OCT 20, 2019
Neuroscience
OCT 20, 2019
Neuroscientists create a stunning digital map of 1,000 neurons
Two years ago, Dr. Jayaram Chandrashekar and his colleagues at the Howard Hughes Medical Institute's Janelia Research Campus sought out to map the mouse brain as intricately as possible. Now,...
OCT 20, 2019
Immunology
OCT 20, 2019
Treating Alzheimer's? Target Microglia
The body’s own immune cells may be the common denominator in Alzheimer’s disease. In a new study of the relationship between microglia, tau pro...
OCT 20, 2019
Cell & Molecular Biology
OCT 20, 2019
New Technique Can Trace the Activity of Individual Neurons
Researchers are learning more about why bright light wakes us up....
Loading Comments...