MAY 09, 2016 7:27 PM PDT

How Alzheimer's Disrupts Memory

Alzheimer’s disease is the sixth leading cause of death in the United States. Currently 1 in 3 senior citizens (over the age of 65) will die dealing with the disease and its effects on memory and cognition, if not from the disease directly. It’s estimated that 5 million Americans have it presently and rates are increasing each year. With such large numbers of people affected, both patients and their caregivers and families, naturally research into the causes and possible treatments are at the forefront of neuroscience studies. Scientists at the Gladstone Institutes have recently discovered how the major genetic risk factor for Alzheimer’s disease causes memory impairment.
 
A protein associated with Alzheimer's disrupts memory

Memory in the human brain is much like the playback of a movie or television show. The brain recalls the memory as if watching it again, and a person remembers a skill or event. When this process is disrupted, as it is in Alzhiemer’s disease, not only is it difficult to recall things, but the brain also has trouble forming new memories.
 
A specific gene related to this function, the apoE4 gene, creates a protein of the same name that markedly increases a person’s risk for Alzheimer’s disease and occurs in 65%–80% of people with Alzheimer’s disease. There are three different types of the APOE gene, called alleles. The apoE4 allele, present in about 20% of the population, increases the risk for Alzheimer’s. apoE4 alleles are the greatest genetic risk factor for late-onset Alzheimer’s. However, this doesn’t mean that those with the apoE4 protein will absolutely get Alzheimer’s disease. Many people develop Alzheimer’s who don’t have an apoE4 allele. It does, however, increase your risk for developing the disease as well as lower the age of potential disease onset.
 
The new research at Gladstone has found more information on how the apoE4 protein works in patients with Alzheimer’s. The protein changes the activity of neurons in the hippocampus, which is an important memory center in the brain that is severely affected by Alzheimer’s disease. In this region, apoE4 decreases two types of brain activity that are important for memory formation: sharp wave ripples and coincident slow gamma activity. During the ripples, prior experiences are replayed numerous times to help preserve the memory of them, and the slow gamma activity that occurs during the ripples helps to ensure that the replay of those memories is accurate.
 
First author Anna Gillespie, PhD, a former graduate student in the Huang lab at Gladstone said in a press release, “When we experience something new, cells in the hippocampus fire in a particular order. Later, these same cells fire over and over again in the same order to replay the event, which helps consolidate the memory so we don’t forget it. Slow gamma activity that occurs during the ripples organizes the firing of these cells. If this activity is disrupted, the playback will be disorganized, compromising the memory.”
 
Researchers used lab mice and looked at the differences in those with apoE4 and those with normal apoE3. Mice with apoE4 had fewer ripples than mice with the normal apoE3 protein, and they had less slow gamma activity during the ripples and it was these differences that pointed to the coordination of cell firing during memory playback as a key player in developing Alzheimer’s disease. The team hopes that understanding the mechanism of these proteins will lead to better treatments for the disease. Take a look at the video below to hear more about the research.
 Sources: Gladstone Institute, Alzheimer's Association
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
MAR 01, 2020
Genetics & Genomics
MAR 01, 2020
Treating Huntington's Disease With a Gene Therapy That Targets Brain Cells
A new therapeutic approach for Huntington's disease may aid patients with other neurodegenerative disorders.
MAR 07, 2020
Drug Discovery & Development
MAR 07, 2020
Single Trip on Magic Mushrooms Boosts Mindfulness
According to new research, a single trip from magic mushrooms is enough for people to experience long-term increases in ...
APR 19, 2020
Plants & Animals
APR 19, 2020
Flamingos Understand the Value of Friendship
Most of the time, wild flamingos are observed in massive flocks as opposed to hanging out on their own. It’s evide ...
APR 24, 2020
Drug Discovery & Development
APR 24, 2020
Teenage Cannabis Use May Prime the Brain to Enjoy Cocaine
New research has found that teenage cannabis use may make the brain more susceptible to the effects of cocaine. "It ...
MAY 16, 2020
Neuroscience
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
MAY 13, 2020
Drug Discovery & Development
MAY 13, 2020
Drug Targets Off Episodes of Parkinson
A novel drug was approved by the FDA to target the “off” episodes of Parkinson disease. The drug is referred ...
Loading Comments...