MAY 24, 2016 5:05 AM PDT

New Technique to See Proteins in the Brain

At the Max Planck Florida Institute of Neuroscience (MPFIN), researchers are looking at a a method used to repair DNA in infected cells to help identify proteins in brain cells. Ryohei Yasuda, Ph.D., Scientific Director, and his team are using a gene editing process to further understand the way cells in our brains change as we learn and form memories. Knowing how the cells in the brain function in learning skills and retaining memories is vital if medical science is to find the causes and treatments for neurodegenerative diseases like Alzheimer’s, Parkinson’s and some mental illnesses as well. 
 

Seeing neurons is essential for brain research


The problem is that the techniques for finding and visualizing the actions of specific proteins in single neurons are not very efficient.  There is no imaging method that can see these proteins clearly. In addition it can take years and hundreds of thousands of dollars to find out how just one kind of neuron works, and so the task would seem all but endless.  At the MPFIN research fellow, Jun Nishiyama, M.D., Ph.D., and post-doctoral researcher, and Takayasu Mikuni, M.D., Ph.D., are using the DNA editing technique of CRISPR/Cas9, which has only been around since 2014, as a basis for their process to investigate neurons.
 
CRISPR is a mechanism within the DNA of bacteria that the single-cell organisms use to fight infections. When a virus breaches a cell and attempts to insert its own infectious DNA into that of a bacterial cell, a special section of the bacterial DNA, called CRISPR, slices the invading DNA, making it ineffective and harmless. The CRISPR/Cas9 process is being used in many applications to knockout specific disease causing genes. The cell then repairs its DNA and along with knock in genes that are inserted during the process called Homology Directed Repair, or HDR, the invader is neutralized and the cell returns to being healthy.
 
The CRISPR system has been a boon to research in many areas, however it’s not successful in brain cells, because it only works on cells that are still dividing. Once the brain is formed, cells no longer divide., there has been little success in manipulating DNA in brain cells, because by the time the brain has formed, its cells are no longer dividing and the knock in genes cannot be added.
 
Yasuda and his team developed a method, which they call SLENDR (single-cell labeling of endogenous proteins by CRISPRCas9-mediated homology-directed repair) that can be used to modify the DNA in single neurons in living samples. Using in utero electroporation, a technique that allowed them to insert the CRISPR/Cas9 system into prenatal brain cells. These cells were still developing and dividing., allowing the DNA to be repaired via HDR as well as allow the insertion of a gene that made proteins turn color, which in turn made them visible under a microscope. The method resulted in the researchers being able to visualize two different proteins, each with its own color, in one cell.  DNA sequencing was used to check that the method really had knocked out the “bad” genes and knocked in the “good.”
 
In a press release, Dr. Yasuda said,  “I believe that SLENDR will be a standard tool for molecular and cellular neurobiology. SLENDR provides a valuable means to determine subcellular localization of proteins, and will help researchers to determine the function of the proteins.” The video below talks more about the new method and what it involves, take a look.

 
Sources: Max Planck Florida Institute for Neuroscience, Cell

About the Author
English
I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
JUN 18, 2022
Neuroscience
Childhood Fitness and Obesity Predict Midlife Cognition
JUN 18, 2022
Childhood Fitness and Obesity Predict Midlife Cognition
Childhood fitness and obesity may predict various aspects of cognition later in life. The corresponding study was publis ...
JUN 21, 2022
Cannabis Sciences
How cannabis affects your running performance
JUN 21, 2022
How cannabis affects your running performance
How does weed affect you if you're a runner? Better or worse? Here's the details.
JUN 23, 2022
Neuroscience
No Link Between Grit and Cognitive Ability
JUN 23, 2022
No Link Between Grit and Cognitive Ability
While people with more ‘grit’ may have more self-control, they may not have greater cognitive ability. The c ...
JUL 20, 2022
Cannabis Sciences
Why Health Experts Consider Delta 8 THC Dangerous
JUL 20, 2022
Why Health Experts Consider Delta 8 THC Dangerous
Delta 8 is booming in popularity, but health experts are concerned. Here's why.
JUL 26, 2022
Neuroscience
Drinking Coffee Before Shopping Increases Purchases and Spending
JUL 26, 2022
Drinking Coffee Before Shopping Increases Purchases and Spending
Drinking a caffeinated beverage before shopping may increase the number of purchases and spending. The corresponding stu ...
JUL 28, 2022
Technology
How Does Blue Light from Digital Screens Affect Us As We Age?
JUL 28, 2022
How Does Blue Light from Digital Screens Affect Us As We Age?
Digital screens are now ubiquitous in our society. Whether T.V.s, laptops, or phones, we engage with screens essentially ...
Loading Comments...