JUN 30, 2016 5:51 AM PDT

Measuring Pressure Inside the Brain

When there has been a traumatic brain injury (TBI) or there is a tumor or other problem in the brain, doctors need to know how much intracranial pressure there is so they can evaluate the options for treating the patient. The most accurate was to do this is the placement of an intraventricular catheter in the cerebral spinal fluid of the brain’s left ventricle but it involves drilling a hole in the skull of the patient. Other methods involve screws or sensors being used, but again, they are invasive and carry additional risks.
Measuring intracranial pressure is crucial in treating brain injuries
There may be a new way however, that is non-invasive. Scientists in Lithuania say they have developed a way to accurately and safely measure brain pressure without surgery, drilling or placing any instruments into the brain tissue.
 
Professor Arminas Ragauskas of Kaulas University of Technology in Lithuania has led a team developing a device called Vittamed which can use ultrasound instruments to check the pressure inside the brain. In an interview with Reuters, Prof. Ragauskas said, "The device consists of just three parts: first of all it is ultrasonic Doppler blood flow meter, which measures blood flow in ophthalmic artery and of course computer and some mechanical parts to fix ultrasonic transducer on to the face of the patient. It works like a pair of scales: we are comparing intracranial pressure with externally applied pressure to the tissue surrounding the eyeball and ultrasonic Doppler device is used as indicator of the pressure balance."
 
A small amount of pressure is put on the eye externally to match the blood pressure in the central retinal artery located just behind the eye, which leads to the brain. The device then compares this pressure, with that inside the retinal artery and a measure of intracranial pressure is determined. Healthy adults will have a range of 0-10 millimeters of mercury (mmHg). Anything above 20 mmHg is abnormal and pressure above 40 mmHg indicates neurological impairment. Readings above 60 mmHg are almost always deadly. The device has been compared to a sphygmomanometer, or as most people know, an ordinary blood pressure cuff.
 
While it uses the technology of Doppler ultrasound, something commonly in use in many other applications in medicine, the team that developed it stressed that is is a bit more advanced, accurate and sensitive than most Doppler devices because in dealing with brain injuries or tumors, precision matters.
 
It’s also safer than the invasive methods with no need for risky anesthesia or surgery and it reduces recovery time for patients and costs for insurance companies and hospitals. The device has already been used in Europe for various medical needs and even NASA has used it for the measurement of intracranial pressure in astronauts in microgravity environments. Brain swelling can impair vision and that’s a problem for space travel and those astronauts working on the ISS. Ragauskas was named a finalist for a European Inventors Award in May for his work on the device. The video below talks more about the development of this device, check it out.

 
Sources:
 
NIHReuters via GMA News Network
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
SEP 01, 2020
Clinical & Molecular DX
Scalp Implants Monitor Epileptic Seizures
SEP 01, 2020
Scalp Implants Monitor Epileptic Seizures
Neuroscientists have developed devices that, when implanted under the scalp of individuals living with epilepsy, can mon ...
OCT 03, 2020
Clinical & Molecular DX
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
OCT 03, 2020
Test Diagnoses Dementia While You Sleep by Estimating Your Brain Age
Researchers at Harvard have discovered a novel diagnostic marker of dementia for identifying undiagnosed patients or tho ...
OCT 14, 2020
Neuroscience
Researchers Pinpoint Neurons Affected by Epilepsy
OCT 14, 2020
Researchers Pinpoint Neurons Affected by Epilepsy
Video: Explains in more detail the different receptors affected by epilepsy. Researchers at the University of Copenhagen ...
OCT 29, 2020
Clinical & Molecular DX
Skin Deep: A Novel Test for Parkinson's
OCT 29, 2020
Skin Deep: A Novel Test for Parkinson's
In Parkinson’s disease (PD), there is chronic degeneration of the central nervous system, particularly in the regi ...
NOV 09, 2020
Drug Discovery & Development
New Immunotherapy Shows Promise for MS
NOV 09, 2020
New Immunotherapy Shows Promise for MS
Researchers from Thomas Jefferson University in Philadelphia are studying an immunotherapy that has shown early pro ...
NOV 15, 2020
Neuroscience
Hearing Test Can Predict Autism in Newborns
NOV 15, 2020
Hearing Test Can Predict Autism in Newborns
For some time now, researchers have been aware that children and adults with autism tend to have different sensory syste ...
Loading Comments...