MAR 12, 2015 1:24 PM PDT

Understanding How Neurons Shape Memories of Smells

WRITTEN BY: Ilene Schneider
In a study that helps to deconstruct how olfaction is encoded in the brain, neuroscientists at University of California, San Diego School of Medicine have identified a type of neuron that appears to help tune, amplify and dampen neuronal responses to chemosensory inputs from the nasal cavity.

The study, published March 9 in Nature Neuroscience, has applications to understanding the root cause of epileptic seizures, which are frequently centered in the olfactory cortex, the part of the brain that processes the sense of smell.

"Our sense of smell is complex and involves many overlapping and interconnected neuronal circuits," said lead author James Sturgill, PhD, a postdoctoral researcher with the Center for Neural Circuits and Behavior in the Department of Neuroscience. "More than hearing or sight, olfaction is based upon past experiences and associations."

"Our research addresses the question of how the brain combines activity from these other circuits with chemosensory inputs to encode an olfactory memory," he said. "Our results suggest that certain neurons in the olfactory cortex serve as tuners and volume controls for various neuronal inputs."

The cells that appear to perform this task are among the 10 percent of neurons in the brain that secrete inhibitory neurotransmitters, chemicals released in the synapse that raise the threshold for neuronal firing. The function of these inhibitory neurons is increasingly recognized as critical to the sensory perceptions of sound and sight. The study is among the first to demonstrate that inhibitory neurons also play a critical role in processing smells.

For the study, neuroscientists employed a technology called optogenetics to de-activate inhibitory neurons in the olfactory cortex of mice. The mice were then presented with different odors and intensities of odors, including lemon, pine and banana, while electrical activity in the olfactory cortex was recorded.

In the absence of the inhibitory neurons, researchers observed an increase in brain activity unrelated to direct processing of the odors. The amount of this background brain activity was unrelated to odor intensity.

When these same neurons were allowed to function normally, the background "noisy" brain activity decreased without distorting the fidelity of the neuronal representation of the odor itself.

Described in signal processing terms, the inhibitory neurons appear to increase the signal-to-noise ratio of brain activity. They may also improve the ability to discern different odors.

"If you wonder how it is possible to smell a banana peel in a garbage can, it is because of this type of subtle neuronal control, achieved through inhibition," said senior author Jeffry Isaacson, PhD, professor of neuroscience.

Neuronal inhibition by these same cells may also assist in preventing excessive excitation in the olfactory cortex that is associated with epilepsy. "The olfactory cortex is the region of the brain most likely to experience epileptic seizures," Isaacson said. "It's likely that the cells involved in processing odors also prevent seizures. Epilepsy can be recast as an abnormality in the function of these inhibitory neurons."

Source: UC San Diego
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
NOV 11, 2019
Neuroscience
NOV 11, 2019
Suicidal Mitochondria Responsible for ALS
Scientists at Northwestern University have dicovered a new mechanism in the brain that may be responsable for the early stages of neurodegeneration seen in...
NOV 19, 2019
Neuroscience
NOV 19, 2019
Hiccups Key For Infant Brain Development
Although we know how we hiccup, why has remained a mystery for some time, with researchers suggesting it to be an evolutionary hangover from when our ances...
DEC 04, 2019
Neuroscience
DEC 04, 2019
Antibiotic Usage May Cause Parkinson's, Study Finds
A study from Helsinki University Hospital, Finland suggests that excessive usage of certain antibiotics may increase one’s risk of developing Parkins...
DEC 21, 2019
Drug Discovery & Development
DEC 21, 2019
Magic Mushrooms Pass First Clinical Trial Against Depression
With the efficacy of selective serotonin reuptake inhibitors such as Prozac increasingly coming under question, the search for new pharmaceutical treatment...
FEB 06, 2020
Cell & Molecular Biology
FEB 06, 2020
Taking a Closer Look at a Disease-Linked Protein
Misfolded proteins are closely linked to many neurodegenerative disorders. Researchers have learned more about one of those pathogenic proteins....
FEB 10, 2020
Cell & Molecular Biology
FEB 10, 2020
Lighting a Path to an Alzheimer's Disease Treatment
Alzheimer's impacts millions of people around the world; globally, it is thought to cost $605 billion a year, and there is still no way to treat it....
Loading Comments...