FEB 27, 2017 4:48 AM PST

Finding a Way to Break the Silence

When a patient is completely paralyzed, as sometimes happens after a brain injury or illness, communication can be difficult if not impossible. Research in neuroscience labs all over the world is focused on technology that can assist patients and their caregivers. Recently, a team led by Stanford University scientists, published a clinical research paper on a brain-to-computer interface (BCI) that paralyzed patients can use to communicate. To date, their project is the fastest and most accurate of any other prototypes developed.
The team at Stanford worked with three study volunteers, all of whom had severe limb weakness. Two of the patients were diagnosed with amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, and the third had a significant spinal cord injury. These patients bravely volunteered to have small electrode arrays surgically implanted in the motor cortices of their brains. The arrays are very small, just the size of a peppercorn. The motor cortex is where signals are sent to arms, hands and fingers to control movement. In the brains of the study volunteers, these signals were picked up by the electrode arrays and transmitted to the computer. Once received by the computer, a set of custom algorithms translated them into commands that moved a cursor on the screen.
 
The participants needed some training, but it was minimal. Once they were sure of the method of imagining hand movements, seeing what happened, and then adjusting their mental efforts, the results pretty much blew away previous projects on speed and accuracy. Dennis Degray, one of the study volunteers, typed at a rte of 39 correct characters per minute. At that rate, he could theoretically communicate at a typing speed of about 8 words a minute. It might seem slow, but for these patients it’s a significant technological breakthrough that allows them to interact with those around them.
 
Krishna Shenoy, PhD, professor of electrical engineering at Stanford and co-senior author of the paper stated, “This study reports the highest speed and accuracy, by a factor of three, over what’s been shown before. We’re approaching the speed at which you can type text on your cellphone.” Co-author, Jaimie Henderson, MD, professor of neurosurgery, who performed two of the three device-implantation procedures at Stanford Hospital added, “Our study’s success marks a major milestone on the road to improving quality of life for people with paralysis.”
 
The system being used in the study is investigational and not available outside clinical research. It’s called the BrainGate Neural Interface System and is being developed in partnership with not only Stanford, but researchers and medical professionals at Massachusetts General Hospital, Case Western Reserve University, Brown University and the U.S. Department of Veterans Affairs. Henderson and Shenoy estimate that in 5-10 years time, the system will be fully wireless, self-calibrating and able to be used without the assistance of a caregiver, a major step for patients who rely on their personal care attendants for almost every task.
 
Degray, whose paralysis includes everything below the collarbone, was injured in a fall that severed his spinal cord. He described the interface as, “one of the coolest video games I’ve ever gotten to play with and I don’t even have to put a quarter in it.” The research on the project at Stanford is published in the February 21st issue of the journal eLife. Take a look at the video below to see the technology in action.
 
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 22, 2020
Neuroscience
Obeying Orders Reduces Empathy-Related Brain Activity
AUG 22, 2020
Obeying Orders Reduces Empathy-Related Brain Activity
Researchers from the Netherlands Institute for Neuroscience have found obeying orders reduces brain activity related to ...
AUG 25, 2020
Neuroscience
Fear of Germs Leading Factor in COVID-19 Preventative Behavior
AUG 25, 2020
Fear of Germs Leading Factor in COVID-19 Preventative Behavior
Researchers from the University of Connecticut have found that people with a psychological aversion to germs are more li ...
SEP 01, 2020
Genetics & Genomics
Women's Genes May Help Protect Against the Worst Alzheimer's Cases
SEP 01, 2020
Women's Genes May Help Protect Against the Worst Alzheimer's Cases
Women tend to get Alzheimer's more than men, but the female genome gives them some protection from the worst aspects of ...
SEP 11, 2020
Immunology
Study Reveals Tumor Defense Mechanism... And How to Beat It
SEP 11, 2020
Study Reveals Tumor Defense Mechanism... And How to Beat It
  P53 is an infamous process gene at the core of the development of tumors.  When P53  functional, it pau ...
OCT 02, 2020
Clinical & Molecular DX
Detecting Dystonia in the Blink of an AI
OCT 02, 2020
Detecting Dystonia in the Blink of an AI
A team of scientists have created a diagnostic tool, powered by artificial intelligence (AI), that can pick up on the su ...
OCT 21, 2020
Neuroscience
New Theory Says Consciousness Arises from Electromagnetic Energy
OCT 21, 2020
New Theory Says Consciousness Arises from Electromagnetic Energy
Professor Johnjoe McFadden, a researcher from the Univerity of Surrey in the UK, has proposed a new theory for conscious ...
Loading Comments...