JUL 05, 2017 4:24 AM PDT

A Robotic Arm for Stroke Patients

For patients who have suffered paralysis, whether from injury or illness, coping with the adjustment of limited mobility is difficult. Many tasks must be re-learned in a new way and in many cases, activities once enjoyed are now impossible. The latest research to help patients with paralysis is from Washington University School of Medicine in St. Louis, using a device that can allow stroke patients to use their hands. What’s even more amazing is that this robotic device can be controlled by thoughts, via a brain-computer interface.

Eric Leuthardt, MD, a professor of neurosurgery, of neuroscience, of biomedical engineering, and of mechanical engineering & applied science at the school stated, "We have shown that a brain-computer interface using the uninjured hemisphere can achieve meaningful recovery in chronic stroke patients." Leuthardt is the co-author of a new study on the technology published in the journal Stroke. While there are many causes of paralysis, stroke is the leading cause of acquired disability among adults. In the United States alone about 700,000 people will suffer a stroke each year. There are currently about 7 million patients dealing with the after effects of a stroke, and that doesn’t include family members who often have to take over the care of a person who is paralyzed after a stroke.

Timing matters in getting the proper treatment for a stroke, but it matters in rehabbing after as well. Many patients will do well in the first three months after a stroke. Some will even completely recover any lost speech or movement. However a significant amount of patients will become permanently disabled. The three month mark is where many recoveries get stalled. Thy Huskey, MD is the director of the Stroke Rehabilitation Center of Excellence at The Rehabilitation Institute of St. Louis and co-senior author and explained why they chose patients who had experienced their first stroke within a certain time period. "We chose to evaluate the device in patients who had their first stroke six months or more in the past because not a lot of gains are happening by that point. Some lose motivation. But we need to continue working on finding technology to help this neglected patient population."

The limbs are controlled by the brain, but in a way that is opposite of what most people might think. The left side of the body is actually controlled by the right side of the brain and the right side of the body is controlled by the left side of the brain. But it’s not that exact. David Bundy, PhD, the study's first author and a former graduate student in Leuthardt's lab and who is now a post-dc at the University of Kansas Medical Center knew from previous research that there was a small area in the brain involved in planning movement that is located on the same side as the limbs it controls. As an example, this area on the left side of the brain can transmit a signal to move the left hand. But if the right side of the brain has been damaged in a stroke, that signal has nowhere to go.

The device being developed by the team at Washington University is called the Ipsihand and includes a cap with electrodes that sense movement planning, a computer that receives the signal from this area of planning and then forwards the signal to a brace worn on the affected hand which then moves it in a pincer grasp so the patient can pick up objects.  While this is very rudimentary at this point, the possible applications could be very important for stroke patients. Ten patients completed a study using the robotic arm brace and their ability to move and used their paralyzed hand increased a significant amount after 12 weeks. Improvements didn’t correlate with time spent using the device, but rather with the ability of the device to pick up brain signals for movement planning, so the team hopes that improving the sensors will bring in even better results. Take a look at the video below to see more about this latest high tech tool for stroke victims.

Sources: Washington University School of Medicine, CNET, The journal Stroke

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
MAR 15, 2020
Genetics & Genomics
MAR 15, 2020
Insight Into Neuronal Growth and Memory Formation
Now scientists have learned more about the transport of mRNA in neurons, and the storage and formation of memories.
MAR 16, 2020
Cannabis Sciences
MAR 16, 2020
Cannabis Reduces ADHD Med Use in New Study
As the legalization of medical cannabis increases in the U.S. and around the globe, its effects on a variety of conditio ...
MAR 13, 2020
Technology
MAR 13, 2020
Advancing Brain-Machine Interfaces
At Stanford University, researchers have designed a device that connects the brain to silicon-based technologies. Althou ...
MAR 24, 2020
Neuroscience
MAR 24, 2020
Researchers Use Silicon to Record Electrical Signals Between Neurons
Researchers from Stanford University have created a way to connect the brain directly to silicon-based technologies. Hop ...
APR 26, 2020
Plants & Animals
APR 26, 2020
Researchers Observe Vocal Learning in Bats
Bats have garnered oodles of attention in previous weeks as they’ve been identified as potential carriers of the i ...
MAY 06, 2020
Neuroscience
MAY 06, 2020
The Brain Replays Waking Experiences While You Sleep
Researchers have found that while we sleep, our brains are busy processing our waking experiences. A process called &lsq ...
Loading Comments...