OCT 09, 2017 5:20 AM PDT

This Tiny Worm is Part of a Big Discovery

The lowly worm isn't usually considered an exciting or valuable animal. Many worms are stuck on the end of a hook for fish bait or added to a garden as fertilizers. However, one species of worm is now a rising star in the field of neuroscience.

Photo Credit: Wikimedia commons/NIH

A crucial part of understanding how the brain works is seeing the neurons in action. In a human brain it's almost impossible to do at the single cell level. A human brain has over 100 billion neurons, and even the best imaging technology can't capture individual cells. When researchers want to get a closer look at how behavior might be related to neuron activity in the brain, the tiny worm species known as Caenorhabditis elegans or C. elegans is the new rock star. In research at Princeton in 2015 and more recent work from the University of California, San Francisco the neuron activity in these tiny transparent worms is being connected to behaviors like sensing danger and getting away, finding food and even looking for a mate.

The most recent work is being led by Dr. Saul Kato, Ph.D., is an assistant professor of neurology at the UCSF Weill Institute for Neurosciences. In his lab, he's using a new imaging technique that allows him to see all 302 of the worm's neurons at the same time. C. elegans are less than one millimeter in size, and their brains are powered by a fraction of the number of neurons in most other animals. Kato explained, "They do everything all animals do, but they do it with only 302 neurons – and now we can watch nearly all of them at the same time."

Because neurons in other animals can't be seen all at once, some researchers would observe a particular group of neurons and then ascribe behaviors to that group's activity. The problem is that there was likely activity in other bunches of neurons at the same time, which contributed to behavior, but it went unseen. Kato's team at UCSF added a fluorescent calcium sensor to make the neuron's electrical activity visible under the microscope. When the concentration of calcium ions is changed, it corresponds to a change in the electrical sequences of neuron activity. Researchers were able to look at specific patterns and identify the behavior (food searching, turns and crawling) just by looking at the flashing of each neuron.

It was a very complex process to record the patterns of activity and match them to behaviors in the worms, so the next task for the team is to work on machine learning algorithms that can parse the electrical patterns quicker and more accurately. Dr. Kato compared the patterns of activity to a piece of music being sung by a chorus. To make sense of the song, it's necessary to hear all the parts. He stated, "This chorus was a surprising finding. We surmise that it is a signal telling each neuron what the body is trying to do so they can contribute meaningfully to the whole animal's function, like sailors on a submarine. It's a way for the neurons to communicate with each other."

The team at UCSF hopes to use the information they have gained by studying the C. elegans in finding out how disruptions in neural patterns are a factor in disease. Check out the video below to learn more.

Sources: UCSF, GlobalNewsConnect, Daily Mail 

About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 22, 2020
Neuroscience
Why Don't Babies Always Remember What they Learn?
AUG 22, 2020
Why Don't Babies Always Remember What they Learn?
Researchers from Ruhr- Universitaet Bochum (RUB) in Germany have found that the mood babies are in when they learn somet ...
SEP 11, 2020
Cannabis Sciences
Frequent Cannabis Use Does Not Increase Pain Sensitivity
SEP 11, 2020
Frequent Cannabis Use Does Not Increase Pain Sensitivity
Researchers from the University of British Columbia have found that frequent cannabis use is not associated with increas ...
SEP 21, 2020
Cannabis Sciences
Why Do We Build Tolerance to Cannabis?
SEP 21, 2020
Why Do We Build Tolerance to Cannabis?
Many notice that after regularly smoking cannabis, it takes more and more to feel its effects- if any at all. While abst ...
OCT 05, 2020
Drug Discovery & Development
Fecal Transplants Could Restore Cognitive Function in the Elderly
OCT 05, 2020
Fecal Transplants Could Restore Cognitive Function in the Elderly
An international team of researchers has found that fecal transplants could one day be used to restore cognitive functio ...
NOV 01, 2020
Neuroscience
High Fat Diet Could Prevent Anorexia Deaths
NOV 01, 2020
High Fat Diet Could Prevent Anorexia Deaths
Researchers from Yale University have homed in on a specific kind of neuron that appears to play a sizable role in fatal ...
NOV 08, 2020
Drug Discovery & Development
Psychedelic Mushrooms Effectively Treat Major Depression
NOV 08, 2020
Psychedelic Mushrooms Effectively Treat Major Depression
Over 17 million people in the US and 300 million people worldwide are estimated to have experienced major depression. No ...
Loading Comments...