OCT 01, 2018 5:10 PM PDT

Plants Thicken Their Leaves in Response to High CO2 Levels, and That's Bad

WRITTEN BY: Anthony Bouchard

Earth’s plants and animals form a symbiotic relationship. As plants convert atmospheric carbon dioxide into oxygen, animal respiration then turns it right back into carbon dioxide in what many would describe as a perpetual cycle. But animal respiration isn’t the only process that generates carbon dioxide as a byproduct; so too do a variety of anthropogenic sources.

Plants help remove the excess carbon dioxide we dump into the atmosphere by way of power production, transportation, and petroleum production, among other things, but they can only do so much. As a new study published this week in the journal Global Biogeochemical Cycles points out, plants become ineffective at their job when there’s too much carbon in the air.

A close-up image of a plant leaf.

Image Credit: Pixabay

But why? As it turns out, the details are in the leaves. Plants exhibit thicker leaves in parts of the world where carbon dioxide levels are at their highest, and while it may seem like a harmless or healthy change at first glance, thick-leafed plants aren’t as effective at removing carbon dioxide from the air as normal-leafed plants are.

If the circumstances above seem like a horrible mix to you, then you’d be right; in fact, it’s an alarming thought. Our planet is undergoing an exceedingly volatile period in its lifecycle, and if plants can’t keep up with it, then atmospheric carbon dioxide could build up exponentially; this would amplify the environmental threats imposed by climate change.

"Plants are flexible and respond to different environmental conditions," explained senior author Abigail Swann from the University of Washington. "But until now, no one had tried to quantify how this type of response to climate change will alter the impact that plants have on our planet."

Related: Growing plants that don't require as much water

Computer models showed that if plants became less effective at removing carbon dioxide from Earth’s atmosphere, then it could leave up to 6.39 million more tons of carbon in the atmosphere each year than initially thought. Consequently, temperatures on Earth could rise 0.3 to 1.4 degrees Celsius higher than initially anticipated.

"Plant biologists have gathered large amounts of data about the leaf-thickening response to high carbon dioxide levels, including atmospheric carbon dioxide levels that we will see later this century," added study lead author Marlies Kovenock, also from the University of Washington. "We decided to incorporate the known physiological effects of leaf thickening into climate models to find out what effect, if any, this would have on a global scale."

Related: Are all the trees dying?

No one knows why plant leaves become thicker in the presence of high carbon dioxide levels, but scientists know it impacts all kinds of plants, and that leaves can thicken by up to a third. Thicker leaves obstruct natural processes within the plant, including photosynthesis, gas exchange, and sugar storage, among other things.

A valid point brought up by the study is that current climate change models fail to take plant changes into consideration. As it would seem from the findings, it’s imperative to factor these changes, as they can have a profound impact on the results.

"We now know that even seemingly small alterations in plants such as this can have a global impact on climate, but we need more data on plant responses to simulate how plants will change with high accuracy," Swann said. 

Future studies could and should investigate how plants respond to particular situations so that we have a better idea of what to expect as our planet’s environment changes.

Source: University of Washington, Global Biogeochemical Cycles

About the Author
  • Fascinated by scientific discoveries and media, Anthony found his way here at LabRoots, where he would be able to dabble in the two. Anthony is a technology junkie that has vast experience in computer systems and automobile mechanics, as opposite as those sound.
You May Also Like
NOV 21, 2021
Genetics & Genomics
Crucial Developmental Genes Found to Still be Active in Adulthood
NOV 21, 2021
Crucial Developmental Genes Found to Still be Active in Adulthood
Hox genes play a critical role in mapping the development of multicellular organisms. This group of genes is also expres ...
NOV 29, 2021
Health & Medicine
HEX and Human Aggression: Sniffing Chemicals Emitted from Babies' Heads Leads to Different Responses in Men and Women
NOV 29, 2021
HEX and Human Aggression: Sniffing Chemicals Emitted from Babies' Heads Leads to Different Responses in Men and Women
A new study published in Science Advances proposes hexadecenal as the first pheromone scientifically linked to aggr ...
DEC 07, 2021
Immunology
Ancient Medicine and Synthetic Biology Collide to Combat Chemo Resistance
DEC 07, 2021
Ancient Medicine and Synthetic Biology Collide to Combat Chemo Resistance
  Strong chemical drugs used to obliterate all rapidly growing cells in the body have been used to treat cancer sin ...
DEC 09, 2021
Immunology
Stopping the Spread of COVID by Chewing Gum?
DEC 09, 2021
Stopping the Spread of COVID by Chewing Gum?
Scientists have developed a special chewing gum that could reduce the risk of spreading SARS-CoV-2. The technology was d ...
DEC 15, 2021
Plants & Animals
A New Way to Visualize the Tree of Life, and Its Vulnerabilities
DEC 15, 2021
A New Way to Visualize the Tree of Life, and Its Vulnerabilities
The history of life on earth can be visualized as a branched tree. Some of those branches have spawned more, while other ...
JAN 08, 2022
Cannabis Sciences
Hemp Supercapacitors Outperform Other Kinds of Batteries
JAN 08, 2022
Hemp Supercapacitors Outperform Other Kinds of Batteries
Research on hemp’s many uses is in its infancy, but recent studies suggest that hemp batteries can outperform lith ...
Loading Comments...