MAR 11, 2015 5:49 AM PDT

Blue Bloods of the Antarctic

An Antarctic octopus gives literal meaning to the phrase "blue blood," as a new study finds the cephalopod has blue pigments in its blood that allow it to survive sub-zero temperatures and possibly higher temps associated with climate change too.
The blue blood of the Pareledone charcoti improves the supply of oxygen to this creature
The findings, published in the journal Frontiers in Zoology, help to explain why the Antarctic octopus -- Pareledone charcoti -- is faring well now, while other animals in its habitat are not.

"This is the first study providing clear evidence that the octopods' blue blood pigment, haemocyanin, undergoes functional changes to improve the supply of oxygen to tissue at sub-zero temperatures," said lead author Michael Oellermann, from the Alfred-Wegener-Institute, in a release.

"This is important," he continued, "because it highlights a very different response compared to Antarctic fish to the cold conditions in the Southern Ocean. The results also imply that due to improved oxygen supply by haemocyanin at higher temperatures, this octopod may be physiologically better equipped than Antarctic fishes to cope with global warming."

The Antarctic Ocean is home to these fish, the octopus, and many other creatures despite the region's history of inhospitably cold temperatures. While it can be hard to deliver oxygen to tissues in the cold due to lower oxygen diffusion and increased blood viscosity, ice-cold waters already contain large amounts of dissolved oxygen.

With that in mind, and hoping to learn more about the sturdy "blue blood" octopus, Oellermann and his team collected and analyzed the haemolymph (a fluid equivalent to blood) from the Antarctic octopus. They also did this for two other octopus species collected from warmer climates: the Southeast Australian Octopus pallidus and the Mediterranean Eledone moschata.

All of these marine animals possess three hearts and contractile veins that pump haemolymph, which is highly enriched with haemocyanin. This oxygen transport protein is analogous to haemoglobin in humans and many other animals. It leads to blue-colored blood, however, instead of red, which has to do with components in the pigment and how the oxygen is processed in the body.

The Antarctic octopus had the bluest blood of all, with at least 40 percent more haemocyanin in its blood compared to the other species. This is among the highest levels ever reported.

The Antarctic octopus' haemocyanin was also found to shuttle oxygen between gills and tissue far better when temperatures were above freezing. This is where the other octopuses lagged behind. The ability may help the Antarctic species to tolerate warmer temperatures in addition to the cold.

It could also explain the lifestyle of this animal, which tends to hang out in warmer (well, warmer for Antarctica) shallow waters and rock pools.

Source: Discovery News
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 26, 2020
Space & Astronomy
Is a Supernova to Blame for the Devonian Extinction Event?
AUG 26, 2020
Is a Supernova to Blame for the Devonian Extinction Event?
Over the roughly 4.5 billion years of Earth's existence, there have been several periods were biodiversity has been near ...
SEP 10, 2020
Plants & Animals
Saving Myanmar's Critically Endangered Turtles
SEP 10, 2020
Saving Myanmar's Critically Endangered Turtles
New images of hatchling Burmese roofed turtles have renewed hope to save this critically endangered species. Late last m ...
SEP 14, 2020
Plants & Animals
Preserving the Avocado
SEP 14, 2020
Preserving the Avocado
Rest easy, chips-and-dip lovers, the world's guacamole supply has been secured for future generations.
OCT 20, 2020
Genetics & Genomics
The Gene Behind the Glow of the Sea Pickle is ID'ed
OCT 20, 2020
The Gene Behind the Glow of the Sea Pickle is ID'ed
In this photo by OceanX, researchers off the coast of Brazil collected Pyrosoma atlanticum specimens with a special robo ...
DEC 07, 2020
Plants & Animals
A Ctenophore Is Discovered - Virtually
DEC 07, 2020
A Ctenophore Is Discovered - Virtually
NOAA researchers used video taken on an underwater expedition to identify a new species of comb jellyfish, or ctenophore ...
JAN 10, 2021
Genetics & Genomics
Did Sleep Precede the Brain?
JAN 10, 2021
Did Sleep Precede the Brain?
The longer we stay awake without sleeping, the more difficult it can become to think straight. But our functioning is re ...
Loading Comments...