JUL 31, 2015 6:03 AM PDT

Does The EM Drive Really Work?

The biggest obstacle in the quest to put manned missions into deep space has always been the time it takes to get there. With the current types of propulsion systems, it would take about nine months to get a spacecraft, crew and enough supplies for the trip, all the way to Mars. The technology exists to get there, however keeping a crew fed, healthy and sane on the way is the key problem.
The EM drive engine works without fuel, in theory at least
Solutions include inducing human stasis, having crewmembers rotate sleep and wake cycles and of course finding a propulsion system that can cut the travel time down. Using something else besides costly rocket fuel would be an advantage as well. Recently there has been a lot of talk about an EM drive, a power source that uses electromagnetic waves inside a closed engine to produce power. NASA is developing one at the Johnson Space Center and seeing some promising results.

There is also a team at Dresden University of Technology in Germany that has tested their version of an EM drive, or as it's known a "resonant cavity thruster." Lead scientist for the project, Martin Tajmar, a professor and chair for Space Systems at the Dresden University of Technology, and his colleague G. Fiedler were in Orlando, Florida this week at the American Institute for Aeronautics and Astronautics' Propulsion and Energy Forum where their findings were the subject of much discussion.

Tajmar and his team reported that their model actually produced thrust similar to prior tests on other models, including the Eagleworks engine, built by NASA. Tamjar's study claims that his model was tested in the exact same conditions, but in his study, he was able to better eliminate errors and other interferences in the prior projects.

But lets back up and take a look at how the concept works. First, electric power is used to generate microwaves inside the closed framework of the thruster. The microwaves then bounce around and the energy produced from that reaction creates thrust that can, in theory, propel a spacecraft. Estimates are that a spacecraft powered by an EM drive engine could make the trip to Mars in just 70 days. The project is not without it's detractors however.

There is no exit point for the energy created to leave the thruster. In conventional rockets, the fuel heats up, produces thrust and then the propellant exits the engine so it can cool down and this after-burn balances the thrust. This is in line with Newton's Third Law of Conservation of Momentum. With the EM drive, there is no expelling of energy or burned fuel, so it violates this law and technically should not work.

In an interview with io9, a Senior Research Physicist at the Institute for Advanced Studies at Austin, Eric W. Davis refutes the results of the German team saying that the thrust measured is likely a result of the device getting hot while operating. In talking about Tamjar's concluding paragraphs Davis said, "He also stated that he was still recording thrust signals even after the electrical power was turned off which is a huge key clue that his thrust measurements are all systematic artifact false positive thrust signals."

While headlines around the world are saying that the "impossible" engine has been proven to work, the reality is that the findings of the German team remain preliminary and have yet to be peer-reviewed. What is not in question is that this theory is as revolutionary as the move from sail to steam was for ships and it demands a closer look from all sides.
About the Author
  • I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
OCT 06, 2019
Space & Astronomy
OCT 06, 2019
A More Practical Theory Regarding Tabby's Star
A distant star system called KIC 8462852, also commonly known as ‘Tabby’s Star,’ has a particularly interesting reputation for dimming sp...
NOV 05, 2019
Space & Astronomy
NOV 05, 2019
New Technologies Are Headed for the International Space Station
Space is hard, and for that reason, researchers are always trying to come up with new ways to make it easier. One of the best places for new technologies t...
NOV 11, 2019
Space & Astronomy
NOV 11, 2019
SpaceX Puts Another 60 Starlink Satellites Into Orbit
A SpaceX Falcon 9 rocket that stood tall and proud at the launch pad at Florida’s Cape Canaveral Air Force Station ignited its engines and lofted a g...
DEC 15, 2019
Space & Astronomy
DEC 15, 2019
MAVEN Mission Connects Mars' Wind Patterns to Surface Features
NASA’s MAVEN mission, launched on November 18th, 2013, has been orbiting Mars and investigating the planet’s features for more than half a deca...
JAN 22, 2020
Space & Astronomy
JAN 22, 2020
Astronomers Have Found the Farthest Galaxy Group
An international team of astronomers funded in part by NASA has found the farthest galaxy group identified to date.  The trio of galaxies, called EGS7...
JAN 27, 2020
Space & Astronomy
JAN 27, 2020
How Dangerous is Radiation on Mars?
One of humankind’s most ambitious goals for the next decade is preparing to send astronauts to Mars for the very first time. Such a feat is projected...
Loading Comments...