OCT 23, 2020 7:30 AM PDT

Astronomers Merge AI and Photonics to Find New Earths

WRITTEN BY: Annie Lennon

Researchers from the University of Sydney have developed a new type of sensor capable of measuring and correcting starlight distortion caused by the Earth's atmosphere. They say that the sensor will make it easier to study distant planets for signs of life.

Until now, the main way to identify planets around distant stars has been to measure regular dips in starlight as they blocked them out during orbit. Given light distortion from the Earth's atmosphere, however, being able to accurately differentiate a light dip from a planet from a star's 'twinkle' has been a challenge. 

To solve this issue, the new sensor, known as a 'photonic wavefront sensor' helps parse through the light signals to better identify when a flicker of light is a 'twinkle' and when it is another planet. 

It works by linking an advanced light converter, called a photonic lantern, to a neural network inference process. As such, it is sensitive to distortions invisible to other wavefront sensors. Placed next to the optical instrument in a telescope where an image is formed, it allows the telescope's adaptive optics systems to correct any light distortions thousands of times per second. 

"This is no doubt a very innovative approach and very different to all existing methods." says Professor Olivier Guyon from the University of Arizona, one of the world's leading experts in adaptive optics. "It could potentially resolve several major limitations of the current technology. We are currently working in collaboration with the University of Sydney team towards testing this concept at Subaru in conjunction with SCExAO, which is one of the most advanced adaptive optics systems in the world."

The researchers behind the new sensor hope that their invention will 'launch a renaissance in exoplanet observation from the ground'. They also say that their technology may be applied to other fields too. These fields include optical communication, remote-sensing, in-vivo imaging, and other areas involving the 'reception and transmission of accurate wavefronts through a turbulent or turbid medium, such as water, blood or air'. 

 

Sources: Phys.orgNature Communications

About the Author
  • Science writer with keen interests in technology and behavioral biology. Her current focus is on the interplay between these fields to create meaningful interactions, applications and environments.
You May Also Like
JUL 20, 2020
Space & Astronomy
How Do Astronauts Have Fun in Space?
JUL 20, 2020
How Do Astronauts Have Fun in Space?
Scientists who inhabit the International Space Station (ISS) typically have 12-hour shifts. These include two and a half ...
JUL 31, 2020
Space & Astronomy
How Many Missions to Mars Have Been Successful?
JUL 31, 2020
How Many Missions to Mars Have Been Successful?
It’s commonly said that roughly half of all missions to Mars have succeeded- while roughly half have failed. But a ...
AUG 09, 2020
Space & Astronomy
Human Spaceflight Returns to the US with SpaceX's Success
AUG 09, 2020
Human Spaceflight Returns to the US with SpaceX's Success
On August 7, A SpaceX recovery vessel called GO Navigator brought the Crew Dragon capsule back to its home port.
NOV 13, 2020
Space & Astronomy
Researchers Observe the Birth of a Magnetar
NOV 13, 2020
Researchers Observe the Birth of a Magnetar
Scientists think they have witnessed the birth of a magnetar for the first time, when a massive burst of gamma rays took ...
NOV 19, 2020
Space & Astronomy
Martian Water Vapor Gets Swept Into Space
NOV 19, 2020
Martian Water Vapor Gets Swept Into Space
Mars was once a planet with oceans of water. So what happened to all of it? Researchers used a tool called MAVEN (Mars A ...
NOV 14, 2020
Chemistry & Physics
STEVE, what is it?
NOV 14, 2020
STEVE, what is it?
STEVE is in the sky! STEVE, as is Strong Thermal Emission Velocity Enhancement, the purple and green streaks that have b ...
Loading Comments...