NOV 14, 2020 9:00 AM PST

Bacteria Make Space Mining 400% More Effective

WRITTEN BY: Annie Lennon

Researchers aboard the International Space Station (ISS) have shown that bacteria can increase space mining efficiency by more than 400%. Their findings pave the way for easier access to materials such as magnesium, iron, and rare Earth minerals while in space. 

Carrying materials from Earth into space is expensive. Even with SpaceX's Falcon Heavy, it costs $1,500 to send a kilogram of payload into space. As such, ways to make use of materials already in space has been a keen area of research for some time. 

As such, for over ten years, a team of researchers had been developing small, matchbox-sized devices called 'biomining reactors' that are easily transported to and installed on the ISS. And in July 2019, they finally managed to ship 18 of the devices to the ISS for low-orbit experiments. 

For the experiments, each reactor contained a bacterial solution containing a small piece of basalt, a volcanic rock abundant on the moon. For three weeks, the basalt rock in each rector was exposed to the bacterial solution to see whether the bacteria could extract minerals from the rock in a similar way to how it does on Earth. 

In three gravitational environments- one simulating Mars, one Earth, and one microgravity, the team aboard the ISS performed experiments with different kinds of bacteria: Sphingomonas desiccabilisBacillus subtilis, and Cupriavidus metallidurans. They also used a control solution with no bacteria. 

All in all, they found that whereas B. subtilis and C. metallidurans yielded results similar to the control solution, S. desiccabilis managed to extract significantly more rare-earth minerals from the basalt than the control solutions. In particular, the bacteria managed to leach between 111.9% and 429.2% more of the rare earth elements than the control solutions. 

The researchers also noted that different gravitational forces did not seem to affect the performance of any of the bacteria. This came as a surprise given previous studies have found that microgravity affects microbial processes. The researchers also found that each bacteria reached similar concentrations in all three gravitational conditions, likely as they had sufficient nutrients grow. 

In the end, the researchers concluded that, with sufficient nutrients, biomining can significantly enhance rare mineral extraction in several gravitational conditions that may occur in space. While it is not necessarily economically viable to return materials harnessed from this process to Earth, the researchers say that biomining may nevertheless play a key role in supporting a self-sustaining human presence in space. 

 

Sources: Science AlertNature Communications

About the Author
  • Science writer with keen interests in technology and behavioral biology. Her current focus is on the interplay between these fields to create meaningful interactions, applications and environments.
You May Also Like
JUL 26, 2020
Space & Astronomy
Active Volcanoes Discovered on Venus
JUL 26, 2020
Active Volcanoes Discovered on Venus
New research has identified 37 volcanic structures on Venus that are thought to have been active recently.
JUL 29, 2020
Chemistry & Physics
Molecular Footloose: Carbon Monoxide Molecules "Square Dance" with Each Other
JUL 29, 2020
Molecular Footloose: Carbon Monoxide Molecules "Square Dance" with Each Other
The act of "dancing" is not limited to humans, as scientists recently discovered. According to a group of Holl ...
SEP 10, 2020
Space & Astronomy
Could There Be Life on Venus?
SEP 10, 2020
Could There Be Life on Venus?
Venus is the hottest planet in our solar system, reaching 465 degrees Celcius- a temperature hot enough to melt lead. Wh ...
SEP 13, 2020
Space & Astronomy
A Missing Piece of the Dark Matter Puzzle
SEP 13, 2020
A Missing Piece of the Dark Matter Puzzle
Most matter, and about a quarter of the mass-energy in the universe is thought to be made of dark matter, but we still d ...
NOV 04, 2020
Space & Astronomy
Missing Link Between Fast Radio Bursts & Magnetars Found in Our Galaxy
NOV 04, 2020
Missing Link Between Fast Radio Bursts & Magnetars Found in Our Galaxy
A neutron star is born when a massive star dies out in a supernova, leaving its collapsed and incredibly dense core rema ...
NOV 20, 2020
Chemistry & Physics
The Passing of a Neutrino Hunting Pioneer
NOV 20, 2020
The Passing of a Neutrino Hunting Pioneer
Masatoshi Koshiba, a revered Japanese physicist known for his groundbreaking work on cosmic neutrino detection, passed a ...
Loading Comments...