AUG 06, 2021 8:22 AM PDT

New Details About the Far Side of the Moon are Revealed

WRITTEN BY: Carmen Leitch

It takes 27,322 days for the Moon to orbit Earth and 27 days for it to rotate once on its axis. We can't detect that motion from here by looking at it, so the Moon appears to be perfectly still, with one side of it always facing us because it's locked in a synchronous rotation. But satellites have glimpsed the far side of the moon, and China's Chang'E-4 mission sent a spacecraft to investigate it further with a rover called Yutu-2.

Image credit: Pixabay

Radar data collected by Yutu-2, which is the first rover to land on the far side of the moon, initially suggested that one layer of soil sits in the subsurface of the Moon, called its regolith. Different layers of soil were not detected at that time.

Now scientists have created a new method for analyzing the data produced by Yutu-2. This has revealed more about the layers on the Moon's surface. The work revealed multiple layers of soil, changing what was assumed.

The new technique makes inferences about soil based on radar signatures of rocks and boulders that are buried in the soil. While the boundaries between soil layers are usually smooth and tough to detect with previous methods, this work revealed those unseen layers. Four were found in all that went to a depth of twelve meters. The findings have been reported in Geophysical Research Letters.

Study leader Dr. Iraklis Giannakis of the University of Aberdeen's School of Geosciences noted that this radar processing tool has given them access to new details in the data.

"By doing so, we have discovered that, rather than a homogenous twelve-meter-deep regolith whose material source was thought to be a nearby crater called Finsen, there is a more complicated structure where the first twelve meters consist of four distinct layers that were previously unseen using conventional radar processing," said Giannakis.

Giannakis suggested that this work will aid current and future planetary exploration missions. "The methodology we have developed can be used to infer the properties of the subsurface using radar and detect previously unseen layered structures within the first ten to twenty meters of planetary soils," Giannakis added. "This will be of great importance in terms of increasing our understanding of planetary soils, as we can now see what lies beneath the surface in more detail than ever before."

Sources: Phys.org via University of Aberdeen, Geophysical Research Letters

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 11, 2022
Chemistry & Physics
Gravity Effects Matter and Antimatter in the Same Way, Researchers Confirm
JAN 11, 2022
Gravity Effects Matter and Antimatter in the Same Way, Researchers Confirm
There is likely little in the world of physics that is so accurately named yet exotically connotated as matter and antim ...
FEB 11, 2022
Space & Astronomy
Mars: A History of Wonder
FEB 11, 2022
Mars: A History of Wonder
Mars, the fourth planet from our Sun. The Red Planet. From time immemorial, we have gazed at it in wonder and dreamed ab ...
FEB 28, 2022
Space & Astronomy
We Will Find Life on Pluto
FEB 28, 2022
We Will Find Life on Pluto
The search for life beyond Earth has reached a fever pitch, with possible locations to find even microbial life being Ma ...
APR 06, 2022
Chemistry & Physics
Using Water to Estimate Universe's Temperature ~13 billion Years Ago
APR 06, 2022
Using Water to Estimate Universe's Temperature ~13 billion Years Ago
Astronomers are often looking for various ways to uncover secrets from the very early Universe, which is now approximate ...
MAY 19, 2022
Space & Astronomy
Io: The Volcano World
MAY 19, 2022
Io: The Volcano World
Io, the first Galilean moon of Jupiter—The Volcano World, with its molten silicate lava lakes and hundreds of acti ...
MAY 19, 2022
Chemistry & Physics
Astronomers Photographed the Black Hole at the Center of Our Galaxy
MAY 19, 2022
Astronomers Photographed the Black Hole at the Center of Our Galaxy
Sagittarius A* (Sgr A*), the supermassive black hole at the center of our own galaxy, was discovered about 50 years ago ...
Loading Comments...