OCT 08, 2016 9:12 AM PDT

Mars' Crust May Affect the Planet's Atmospheric Composition

WRITTEN BY: Anthony Bouchard

NASA has been exploring Mars since the 1960’s, but it wasn’t until today’s modern technology and advanced computers that they’ve been able to answer so many unanswered questions about the red planet. One of those is the abundance of certain isotopes in Mars’ atmosphere.
 
Using the Curiosity Rover, which first started crawling around on the red planet’s surface in 2012, NASA has been able to study the chemical content of Mars’ surface and atmosphere. In particular, they can use the on-board Sample Analysis at Mars (SAM) instruments to measure chemical composition and properties.
 

Mars doesn't have a super robust atmosphere, but it does contain some curious isotopes.

 
One of the more recent findings is the higher presence of krypton and xenon isotopes in the atmosphere than originally thought, both of which are “chemical variants” of the two elements because they have more neutrons than the basic form of the element.
 
It’s worth noting that these isotopes exist in greater amounts on Mars than they do on Earth, and scientists think they might know why.
 
In a study published in the Earth and Planetary Science Letters, NASA explains how Mars’ surface, the chemicals embedded in the crust themselves, could be contributing to the existence of these isotopes.
 
"What we found is that earlier studies of xenon and krypton only told part of the story," said Pamela Conrad, study lead author and SAM's deputy principal investigator at NASA's Goddard Space Flight Center. "SAM is now giving us the first complete in situ benchmark against which to compare meteorite measurements."
 
In essence, some of the isotopic existence may be a result of meteorites striking Mars, but that’s certainly not the only source of these isotopes.
 
Using static mass spectrometry, a way to analyze mere trace amounts of gases or isotopes, NASA was able to come up with the conclusions that some of the isotopes didn’t quite form as expected, suggesting there was more to the mystery than just meteorites.
 
The new theory comes by way of a natural process known as neutron capture, which is where the isotopes may be formed inside of the planet’s crust before being released into the atmosphere. Barium and bromine in the crust may have surrendered some of their neutrons to xenon and krypton respectively, producing what are known as xenon-124 and 126 and krypton-80 and 82.
 

 Image Credit: NASA/GSFC/JPL-Caltech

The impacts from space rocks may have helped release these gasses into the atmosphere, and over time, even the cracks in the red planet’s surface may have allowed them to escape the crust.
"SAM's measurements provide evidence of a really interesting process in which the rock and unconsolidated material at the planet's surface have contributed to the xenon and krypton isotopic composition of the atmosphere in a dynamic way," Conrad continued.

It's worth noting that the Mars 2020 rover is still under development and will, in coming years, become the latest edition of red planet-roving robots to study the planet, furthering our knowledge of its composition and the possibility that it may be able to support life. Equipped with the latest technology, it may even provide more clues into this study.

Source: NASA

About the Author
  • Fascinated by scientific discoveries and media, Anthony found his way here at LabRoots, where he would be able to dabble in the two. Anthony is a technology junkie that has vast experience in computer systems and automobile mechanics, as opposite as those sound.
You May Also Like
JAN 24, 2021
Chemistry & Physics
ALMA observations give insight into the formation of stars
JAN 24, 2021
ALMA observations give insight into the formation of stars
New research published in the journal Astronomy & Astrophysics gives new insight into the mystery behind how stars f ...
MAR 09, 2021
Space & Astronomy
Meteorite Parked in UK Driveway May Hold Clues to Planet Formation, Early Life
MAR 09, 2021
Meteorite Parked in UK Driveway May Hold Clues to Planet Formation, Early Life
Hayabusa2 and OSIRIS-REx have spent years trying to intercept asteroids & collect samples. This meteor made it a little ...
MAY 24, 2021
Chemistry & Physics
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
MAY 24, 2021
Plasma jets observed interacting with magnetic fields in far-off galaxy cluster
New observations from radio telescopes and supercomputer simulations show plasma jets interacting with magnetic fields i ...
MAY 29, 2021
Space & Astronomy
First Matter in the Universe Flowed Like Tap Water
MAY 29, 2021
First Matter in the Universe Flowed Like Tap Water
In two separate studies, researchers led by those at the University of Copenhagen and Queen Mary University of London fo ...
JUN 22, 2021
Space & Astronomy
An Unusual Galaxy Without Dark Matter
JUN 22, 2021
An Unusual Galaxy Without Dark Matter
Even though we still cannot detect dark matter, many researchers are confident that exists. It seems to act as a kind of ...
JUL 18, 2021
Earth & The Environment
Climate Change has Tilted the Axis of the Earth
JUL 18, 2021
Climate Change has Tilted the Axis of the Earth
The axis of the Earth intersects the planet at the magnetic pole, and Earth's poles are known to wander. They can even f ...
Loading Comments...