MAR 07, 2017 11:43 AM PST

'Dust Traps' Might Make Planetary Formation Possible

The answer to the question of how planets are formed has eluded scientists for years, but there may finally be a light at the end of the tunnel as some researchers think they might have some idea of what causes them to form.

Writing in the Monthly Notices of the Royal Astronomical Society, the researchers discuss a very real scenario where young star systems develop disks of dust, gas, and other kinds of material that eventually clumps together to form planets.

Are 'dust traps' responsible for the formation of planets in these kinds of planet-forming debris disks?

Image Credit: Jean-Francois Gonzalez

While the existence of these disks is relatively well-known and accepted by current astrophysicists, there are still a number of bumps in the road that have to be overcome for planetary formation to be successful, including the drag of gas on particles and collisions from other formations breaking larger ones apart.

Using computer models, the researchers were able to recreate the circumstances where disks of debris form and then eventually begin ‘sticking together’ over time thanks to the properties of gravity.

These debris range in size, from micron-scale objects to fist-sized objects to large kilometer-scale objects, but when gravity has a chance to act on it, everything eventually clumps together to form bigger objects, and the cycle simply repeats itself until all of the matter has been clumped together in some way.

In order to get over the two very real complications, the researchers discuss something called a ‘dust trap’ that would have to exist within the disk of debris and gas.

This is essentially a controlled region in the disk where moving debris and gas are slowed down from the inevitable inwards pull towards the star’s center of gravity and are able to collect much easier. The slow-down also prevents collisions from breaking apart the already-formed clumps of material that will soon go off to form planets.

An artist's rendition of how the 'dust trap' theory works.

Image Credit: Volker Schurbert

These regions in planet-forming disks are far more stable for planetary formation than anywhere else in the disk is, which explains why planets are able to form in them more easily than anywhere else. Once enough matter clumps together, it gets to be massive enough that it creates its own gravitational influence and can redirect its own path.

More importantly, dust traps are probably far more common than originally thought, which might explain why so many star systems have their own planets.

Although we can spot planetary disks forming in other systems, we haven’t yet observed ‘dust trap’ activity taking place. Since there are so many different systems out there with planets orbiting the host star. This process could have taken place repeatedly to make it possible for those planets to form, as no other theory to date has such a solid foundation.

Source: Phys.org

About the Author
  • Fascinated by scientific discoveries and media, Anthony found his way here at LabRoots, where he would be able to dabble in the two. Anthony is a technology junkie that has vast experience in computer systems and automobile mechanics, as opposite as those sound.
You May Also Like
OCT 15, 2019
Space & Astronomy
OCT 15, 2019
Is SpaceX's Starlink Satellite Internet System Bad for Astronomy?
Unless you’ve been living under a rock, you’ve probably heard something about the Starlink internet satellites that SpaceX recently sent to out...
OCT 15, 2019
Chemistry & Physics
OCT 15, 2019
Mysterious Cosmic Radio Signal Pinpointed to its Source
Releasing the 80 years-worth entire solar energy in just a tiny fraction of a second, fast radio burst (FRB) is the one of most energetic and mysterious ph...
OCT 15, 2019
Space & Astronomy
OCT 15, 2019
Here's What the Earth Would Be Like if it Spun Sideways
Planet Earth – the place we all call our home – rotates on its axis with a 23.5-degree tilt. Planetary scientists think that an early solar sys...
OCT 15, 2019
Space & Astronomy
OCT 15, 2019
The Science Behind the Hubble Deep Field Image
The Hubble Space Telescope launched into low orbit around the Earth in 1990, and it was only a few years later that the space-based observatory captured a...
OCT 15, 2019
Space & Astronomy
OCT 15, 2019
NASA's Dawn Mission Taught Us Much About the Asteroid Vesta
In 2011, NASA’s Dawn spacecraft arrived at its destination, enabling planetary scientists with the American space agency to study a particularly capt...
OCT 15, 2019
Space & Astronomy
OCT 15, 2019
Astronomers Find At Least 20 More Moons Orbiting Saturn
Just this past week, Saturn overtook Jupiter as the planet in our solar system with the highest number of moons. Researchers from the Carnegie Institution...
Loading Comments...